Pregunta
upstudy study bank question image url

SP4. An object 4 cm tall is located 30 cm from a concave mirror with a focal length of 15 cm . Because the focal length is half the radius of the curvature, the object is located at the center of curvature of the mirror. a. Using the object-image distance formula, find the loca- tion of the image. b. Calculate the magnification of this image. c. Is the image real or virtual, upright or inverted? d. Trace two rays from the top of the object to confirm your results.

Ask by Colon Howell. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a.** The image is formed 30 cm from the mirror. **b.** The magnification is –1. **c.** The image is real, inverted, and the same size as the object. **d.** Two principal rays from the object converge at the image point 30 cm from the mirror, confirming the image is real, inverted, and the same size as the object.

Solución

Let's solve each part of the problem step-by-step. ### **Given:** - **Object height (\( h_o \))**: 4 cm - **Object distance (\( u \))**: 30 cm - **Focal length (\( f \))**: 15 cm - **Radius of curvature (\( R \))**: \( R = 2f = 30 \) cm Since the object is placed at the center of curvature (\( C \)) of the concave mirror, we can use the mirror equations and magnification formulas to find the desired quantities. --- ### **a. Location of the Image** **Mirror Equation:** \[ \frac{1}{f} = \frac{1}{u} + \frac{1}{v} \] **Given:** - \( f = 15 \) cm (concave mirror, so \( f \) is positive) - \( u = 30 \) cm (object distance, positive as per standard sign conventions for mirrors) **Plugging in the values:** \[ \frac{1}{15} = \frac{1}{30} + \frac{1}{v} \] **Solving for \( v \):** \[ \frac{1}{v} = \frac{1}{15} - \frac{1}{30} = \frac{2 - 1}{30} = \frac{1}{30} \] \[ v = 30 \text{ cm} \] **Conclusion:** - The image is formed **30 cm** from the mirror, which means it is located at the **center of curvature**. --- ### **b. Magnification of the Image** **Magnification Formula:** \[ m = \frac{h_i}{h_o} = -\frac{v}{u} \] **Given:** - \( v = 30 \) cm - \( u = 30 \) cm **Calculating Magnification:** \[ m = -\frac{30}{30} = -1 \] **Conclusion:** - The magnification is **-1**, meaning the image is **the same size** as the object but inverted. --- ### **c. Nature of the Image** From the magnification and image distance: - **Real vs. Virtual**: - Since \( v \) is positive, the image is **real**. - **Orientation**: - The magnification is negative (\( m = -1 \)), indicating the image is **inverted**. **Conclusion:** - The image is **real**, **inverted**, and the **same size** as the object. --- ### **d. Ray Tracing to Confirm Results** To confirm the image formation, consider tracing two principal rays from the top of the object: 1. **Parallel Ray:** - **Path**: Travels parallel to the principal axis, reflects through the focal point (\( F \)). 2. **Focal Ray:** - **Path**: Passes through the focal point before reflection and then travels parallel to the principal axis. **Process:** 1. **Draw the Principal Axis:** - Mark the **mirror** at one end. - Locate the **focal point (\( F \))** at 15 cm from the mirror. - Locate the **center of curvature (\( C \))** at 30 cm from the mirror. 2. **Position the Object:** - Place the object at \( C \) (30 cm from the mirror). 3. **Trace the Rays:** - **Parallel Ray**: From the top of the object, draw a ray parallel to the principal axis, reflecting through \( F \) and converging at the image point at \( C \). - **Focal Ray**: From the top of the object, draw a ray passing through \( F \) before hitting the mirror, reflecting parallel to the principal axis and converging at the image point at \( C \). **Conclusion:** - Both rays converge at the same point at 30 cm on the same side as the object, confirming the image is **real**, **inverted**, and **same size** as the object. --- ### **Summary of Answers** **a.** The image is formed 30 cm from the mirror (at the center of curvature). **b.** The magnification is –1. **c.** The image is real, inverted, and the same size as the object. **d.** *(As described above)* Two principal rays from the object converge at the image point 30 cm from the mirror, confirming the image’s characteristics.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the location of the image, we start with the mirror formula: \( \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \). Plugging in \( f = -15 \, \text{cm} \) (negative because it's a concave mirror) and \( d_o = -30 \, \text{cm} \), we get: \[ \frac{1}{-15} = \frac{1}{-30} + \frac{1}{d_i} \] Solving for \( d_i \): \[ \frac{1}{d_i} = \frac{1}{-15} + \frac{1}{30} \implies \frac{1}{d_i} = -\frac{2}{30} + \frac{1}{30} = -\frac{1}{30} \] So, \[ d_i = -30 \, \text{cm} \] This indicates the image is located 30 cm in front of the mirror. Next, we calculate magnification using the formula \( m = -\frac{d_i}{d_o} \): \[ m = -\frac{-30}{-30} = 1 \] The magnification of 1 means the image is the same size as the object. Now, evaluating if the image is real or virtual: since the image distance is negative and on the same side as the object in a concave mirror, the image is real and inverted. To visualize, trace two rays from the top of the object: one ray parallel to the principal axis reflects through the focal point, and another traveling through the focal point reflects parallel to the principal axis. Both rays converge to form the image, confirming it's real, inverted, and of the same height as the object!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad