Pregunta
upstudy study bank question image url

  1. A small rectangular pool has dimensions 12 m by 6 m by 2 m . A
    landscaper wishes to increase the length, width and height by the same
    amount so that the surface area is at most . What are the
    maximum dimensions of the larger pool?

Ask by Dunn Vargas. in Canada
Jan 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The largest possible pool dimensions are approximately 14.38 m in length, 8.38 m in width, and 4.38 m in height.

Solución

To determine the maximum dimensions of the larger pool, let’s follow these steps:

1. Original Pool Dimensions:

  • Length (L) = 12 m
  • Width (W) = 6 m
  • Height (H) = 2 m

2. Increased Dimensions:

Let be the amount by which each dimension is increased. Then, the new dimensions are:
  • New Length = m
  • New Width = m
  • New Height = m

3. Surface Area Constraint:

The surface area of a rectangular prism is given by:
For the larger pool:
Divide both sides by 2:

4. Expanding and Simplifying:

Subtract 220 from both sides:
Solve the quadratic equation using the quadratic formula:
Since must be positive:

5. Maximum Dimensions:

Adding to each original dimension:

Final Answer:

The largest possible pool measures approximately 14.38 m × 8.38 m × 4.38 m.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the maximum dimensions of the larger pool while ensuring the surface area does not exceed , we first calculate the surface area of the existing pool. The formula for the surface area of a rectangular pool is given by:
For the original pool dimensions (length , width , height ), the surface area is:
Let be the increase in length, width, and height. The new dimensions will be:
  • Length:
  • Width:
  • Height:
The new surface area can be described as:
We need this new surface area to be at most :
Dividing by 2:
Now, we will expand and simplify each term:
Putting it all together:
Combining like terms:
Subtracting 220 from both sides:
Now, we can use the quadratic formula where , , and :
Calculating the discriminant:
Finding the roots:
Calculating the two roots:
  1. (not applicable)
Thus, .
Now substituting back:
  • Maximum length:
  • Maximum width:
  • Maximum height:
The maximum dimensions of the larger pool are approximately:
Length: 14.37 m, Width: 8.37 m, Height: 4.37 m.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad