Pregunta
upstudy study bank question image url

Austin invested \( \$ 13,000 \) in an account paying an interest rate of \( 6 \frac{3}{4} \% \) compounded monthly. Easton invested \( \$ 13,000 \) in an account paying an interest rate of \( 7 \frac{1}{4} \% \) compounded daily. After 19 years, how much more money would Easton have in his account than Austin, to the nearest dollar?

Ask by Thornton Carrillo. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Easton would have \$4,832 more than Austin after 19 years.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

To find out how much more money Easton would have than Austin after 19 years, we first calculate the future value of each investment using the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \(A\) = the amount of money accumulated after n years, including interest. - \(P\) = principal amount (the initial amount of money). - \(r\) = annual interest rate (decimal). - \(n\) = number of times that interest is compounded per year. - \(t\) = the number of years the money is invested or borrowed for. ### Calculating Austin's Investment: **Principal (P)**: $13,000 **Interest Rate (r)**: \(6 \frac{3}{4} \% = 0.0675\) **Compounded Monthly (n)**: 12 times a year **Time (t)**: 19 years \[ A = 13000 \left(1 + \frac{0.0675}{12}\right)^{12 \times 19} \] Calculating the values: \[ A = 13000 \left(1 + 0.005625\right)^{228} \] \[ A = 13000 \left(1.005625\right)^{228} \] \[ A \approx 13000 \times 3.39872 \approx 44283.36 \] ### Calculating Easton's Investment: **Principal (P)**: $13,000 **Interest Rate (r)**: \(7 \frac{1}{4} \% = 0.0725\) **Compounded Daily (n)**: 365 times a year **Time (t)**: 19 years \[ A = 13000 \left(1 + \frac{0.0725}{365}\right)^{365 \times 19} \] Calculating the values: \[ A = 13000 \left(1 + 0.000198630135)\right)^{6935} \] \[ A = 13000 \left(1.00019863\right)^{6935} \] \[ A \approx 13000 \times 4.368316 \approx 56758.12 \] ### Difference Between Easton's and Austin's Investments: Now, to find out how much more Easton has than Austin: \[ \text{Difference} = 56758.12 - 44283.36 \approx 12474.76 \] Rounding to the nearest dollar, the amount is approximately: \[ \text{Difference} \approx 12475 \] So, Easton would have about **$12,475** more than Austin after 19 years.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad