Pregunta

1. Consider the fallowing number pattern: \[ 6 ; 13 ; 22 ; 33 \] 1.1 Write down the next ierns of the number pattenit 1.2 Determine the \( n^{\text {th }} \) of the sequence. 1.3 For whar valueis of \( n \) is \( T_{n} \) equal to 24977

Ask by Rojas Wheeler. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There is no integer value of \( n \) for which \( T_n = 24,\!977 \) in the given sequence.

Solución

Let's analyze the given number pattern and address each of your questions step-by-step. ## Given Sequence: \[ 6; \, 13; \, 22; \, 33 \] ### 1.1. **Write Down the Next Terms of the Number Pattern** To identify the pattern, let's examine the differences between consecutive terms: \[ \begin{align*} 13 - 6 &= 7 \\ 22 - 13 &= 9 \\ 33 - 22 &= 11 \\ \end{align*} \] **Differences between terms:** \( 7, \, 9, \, 11 \) We observe that the differences are increasing by **2** each time. Continuing this pattern: \[ \begin{align*} \text{Next difference} &= 11 + 2 = 13 \\ \text{Next term} &= 33 + 13 = 46 \\ \text{Following difference} &= 13 + 2 = 15 \\ \text{Next term} &= 46 + 15 = 61 \\ \text{And so on...} \\ \end{align*} \] **Next few terms of the sequence:** \( 46, \, 61, \, 78, \, \ldots \) --- ### 1.2. **Determine the \( n^{\text{th}} \) Term of the Sequence** Since the differences between consecutive terms are increasing by a constant (2), the sequence is **quadratic**. The general form of a quadratic sequence is: \[ T_n = an^2 + bn + c \] To find the coefficients \( a \), \( b \), and \( c \), we'll use the first three terms of the sequence. **Given:** \[ \begin{align*} T_1 &= 6 \\ T_2 &= 13 \\ T_3 &= 22 \\ \end{align*} \] **Setting up the equations:** \[ \begin{cases} a(1)^2 + b(1) + c = 6 \quad \Rightarrow \quad a + b + c = 6 \quad \text{(1)} \\ a(2)^2 + b(2) + c = 13 \quad \Rightarrow \quad 4a + 2b + c = 13 \quad \text{(2)} \\ a(3)^2 + b(3) + c = 22 \quad \Rightarrow \quad 9a + 3b + c = 22 \quad \text{(3)} \\ \end{cases} \] **Solving the equations:** 1. Subtract equation (1) from equation (2): \[ (4a + 2b + c) - (a + b + c) = 13 - 6 \\ \Rightarrow 3a + b = 7 \quad \text{(4)} \] 2. Subtract equation (2) from equation (3): \[ (9a + 3b + c) - (4a + 2b + c) = 22 - 13 \\ \Rightarrow 5a + b = 9 \quad \text{(5)} \] 3. Subtract equation (4) from equation (5): \[ (5a + b) - (3a + b) = 9 - 7 \\ \Rightarrow 2a = 2 \\ \Rightarrow a = 1 \] 4. Substitute \( a = 1 \) into equation (4): \[ 3(1) + b = 7 \\ \Rightarrow b = 4 \] 5. Substitute \( a = 1 \) and \( b = 4 \) into equation (1): \[ 1 + 4 + c = 6 \\ \Rightarrow c = 1 \] **Therefore, the \( n^{\text{th}} \) term of the sequence is:** \[ T_n = n^2 + 4n + 1 \] **Verification:** \[ \begin{align*} T_1 &= 1^2 + 4(1) + 1 = 6 \\ T_2 &= 2^2 + 4(2) + 1 = 13 \\ T_3 &= 3^2 + 4(3) + 1 = 22 \\ T_4 &= 4^2 + 4(4) + 1 = 33 \\ \end{align*} \] All terms match the given sequence. --- ### 1.3. **For What Value of \( n \) is \( T_n = 24,\!977 \)?** We need to solve for \( n \) in the equation: \[ n^2 + 4n + 1 = 24,\!977 \] **Step 1: Rearrange the Equation** \[ n^2 + 4n + 1 - 24,\!977 = 0 \\ \Rightarrow n^2 + 4n - 24,\!976 = 0 \] **Step 2: Use the Quadratic Formula** The quadratic equation \( ax^2 + bx + c = 0 \) has solutions: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = 4 \), and \( c = -24,\!976 \). \[ \begin{align*} n &= \frac{-4 \pm \sqrt{4^2 - 4(1)(-24,\!976)}}{2(1)} \\ &= \frac{-4 \pm \sqrt{16 + 99,\!904}}{2} \\ &= \frac{-4 \pm \sqrt{99,\!920}}{2} \\ \end{align*} \] **Step 3: Calculate the Discriminant** \[ \sqrt{99,\!920} \approx 316.1 \] **Step 4: Find \( n \)** \[ n = \frac{-4 \pm 316.1}{2} \] Since \( n \) must be a positive integer: \[ n \approx \frac{-4 + 316.1}{2} \approx \frac{312.1}{2} \approx 156.05 \] **Conclusion:** Since \( n \) must be an integer, and the closest integer values are: - \( n = 156 \): \[ T_{156} = 156^2 + 4(156) + 1 = 24,\!336 + 624 + 1 = 24,\!961 \] - \( n = 157 \): \[ T_{157} = 157^2 + 4(157) + 1 = 24,\!649 + 628 + 1 = 25,\!278 \] Neither \( T_{156} \) nor \( T_{157} \) equals 24,977. Thus: **There is no integer value of \( n \) for which \( T_n = 24,\!977 \) in this sequence.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the next items in the sequence, we first observe the differences between the numbers: \( 13 - 6 = 7 \), \( 22 - 13 = 9 \), and \( 33 - 22 = 11 \). The differences (7, 9, 11) suggest the next difference will be 13. Thus, the next numbers are \( 33 + 13 = 46 \) and \( 46 + 15 = 61 \). Therefore, the next items are 46 and 61. To determine the \( n^{th} \) term of the sequence, we notice that it's quadratic. The differences form an arithmetic sequence (7, 9, 11, …) that increases by 2 each time. The formula for the \( n^{th} \) term can be expressed as \( T_n = n^2 + 5n \), where \( n \) starts from 1. This allows us to represent the sequence with a nice formula! To solve for \( n \) when \( T_n = 24977 \), we set up the equation: \[ n^2 + 5n - 24977 = 0 \] Using the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1 \), \( b = 5 \), and \( c = -24977 \), we calculate the discriminant and ultimately find \( n \) values. After calculations, we get \( n = 149 \) or \( n = -154 \) (we discard the negative since \( n \) must be positive). Thus, \( T_{149} \) equals 24977.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad