Pregunta
upstudy study bank question image url

4.40 CFLBs: A manufacturer of compact fluorescent light bulbs advertises that the distribution of the
lifespans of these light bulbs is nearly normal with a mean of 9,000 hours and a standard deviation of 1,000
hours.
(a) What is the probability that a randomly chosen light bulb lasts more than 10,500 hours?
(please round to four decimal places) (b) Describe the distribution of the mean
lifespan of 15 light bulbs.
right skewed
approximately normal with and
approximately normal with and
hours?
What is the probability that the mean lifespan of 15 randomly chosen light bulbs is more than 10,500
(please round to four decimal places)

Ask by Olson Wood. in the United States
Mar 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The probability that a randomly chosen light bulb lasts more than 10,500 hours is approximately 0.0668.
(b) The distribution of the mean lifespan of 15 light bulbs is approximately normal with a mean of 9,000 hours and a standard deviation of approximately 258.19 hours. The probability that the mean lifespan of 15 light bulbs is more than 10,500 hours is approximately 0.0000.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To find the probability that a randomly chosen light bulb lasts more than 10,500 hours, we first convert this lifespan into a z-score using the formula:
Here, , , and . Plugging in these values:
Using the z-table or a standard normal distribution calculator, the probability of a z-score greater than 1.5 is approximately 0.0668. Therefore, the probability that a randomly chosen light bulb lasts more than 10,500 hours is roughly 0.0668 or 0.0668 when rounded to four decimal places.
Now, for the mean lifespan of 15 light bulbs, due to the Central Limit Theorem, the distribution of the sample mean will follow an approximately normal distribution with:
and .
To find the probability that the mean lifespan of 15 randomly chosen light bulbs is more than 10,500 hours:
First, calculate the z-score:
Using the z-table, the probability of a z-score greater than 5.8 is effectively 0, which implies it’s extremely unlikely for the mean lifespan of those 15 light bulbs to exceed 10,500 hours. Thus, it’s roughly 0.0000 when rounded to four decimal places.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad