Pregunta
upstudy study bank question image url

QUESTION 3
The roots of a quadratic equation are .
3.1 Calculate the value(s) of for which the roots will be real.
3.2 Give one value of for which the roots will be rational.
[3]
QUESTION 4
Simplify the following without the use of a calculator:



[13]
QUESTION 5
5.1 If and , determine with the aid of a diagram the value of .
5.2 If , write down the following in terms of :

5.2.2

Ask by Summers Chen. in South Africa
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

QUESTION 3

  1. Calculate the value(s) of for which the roots are real:
    • For the roots to be real, .
    • Solving for : .
  2. Give one value of for which the roots are rational:
    • Choose : .

QUESTION 4

  1. Simplify :
    • Simplifies to .
  2. Simplify :
    • Simplifies to .
  3. Simplify :
    • Simplifies to .

QUESTION 5

  1. Determine :
    • Given and .
    • .
    • Calculation: .
  2. Express the following in terms of :
    • .
    • .
    • .

Solución

Let’s solve the problems step by step.

QUESTION 3

3.1 Calculate the value(s) of for which the roots will be real.

The roots of the quadratic equation are given by . For the roots to be real, the expression under the square root (the discriminant) must be non-negative:
Now, let’s solve this inequality for :

3.2 Give one value of for which the roots will be rational.

For the roots to be rational, the expression under the square root must be a perfect square. Let for some integer :
Choosing :
Thus, one value of for which the roots will be rational is .

QUESTION 4

4.1 Simplify

First, let’s rewrite the expression:
Now, we know that , so:
Now substituting this back into the expression:

4.2 Simplify

We can rewrite as :
Now, :

4.3 Simplify

First, simplify :
Now, find a common denominator:
The numerator simplifies to:
The denominator is:
Thus, the expression simplifies to:

QUESTION 5

5.1 If and , determine .

From the equation:
This corresponds to angles in the second and third quadrants. Since , we are in the second quadrant.
Thus, .
Now, calculate :
Now substituting:

5.2 If , write down the following in terms of :

5.2.1
Using the identity :
5.2.2
Using the identity :
[
\cos

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The concept of discriminants comes to play when determining if the roots of a quadratic equation are real. For your quadratic expression, the terms inside the square root must be non-negative, which translates to . Solving this gives you the crucial condition for real roots: ! So, if meets this condition, you’ll be golden!
To ensure the roots are rational, the expression under the square root, , must be a perfect square. This means you can let where is an integer. Solving for , you get . Choosing will give you —that’s a sure-fire way to get rational roots! Happy solving!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad