In calculus it is frequently important to write an expression in the form \( x^{n} \), where \( c \) is a constant and \( n \) is a rational number. Write the following expression in this form.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To rewrite an expression in the form \( x^{n} \), you might start with a fraction or a root. For instance, the square root of \( x \) can be expressed as \( x^{1/2} \), while \( x \) raised to a cube can be written as \( x^{3} \). If you have something like \( \frac{1}{\sqrt{x}} \), this can be rearranged to \( x^{-1/2} \). Understanding how to manipulate these forms is a fundamental skill in calculus that makes differentiation and integration much easier! One common mistake is trying to convert expressions without respecting the rules of exponents. For example, when rewriting \( \sqrt{x^3} \), remember it's \( x^{3/2} \), not \( \frac{3}{2}\sqrt{x} \). Always double-check your transformations, and if you're unsure, use a simple numerical example to test the equivalence of your expressions before proceeding!