Pregunta
\( f(x)=\left\{\begin{array}{cc}2 x-1 ; & x<-2 \\ -x^{2}+5 ; & -2 \leq x<2 \\ -2[-x+1] ; & x \geq 2\end{array}\right. \) Given: find the values for the following. Type the final answer in the blank. If the answer is No solution/does not exist, type DNE. \( f(-2)= \) \( f(4.6)= \)
Ask by Mills Cruz. in the United States
Jan 30,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( f(-2) = 1 \)
\( f(4.6) = 7.2 \)
Solución
To evaluate the function \( f(x) \) at the given points, we'll use the appropriate piece of the piecewise function based on the value of \( x \).
The function is defined as:
\[
f(x) = \begin{cases}
2x - 1 & \text{if } x < -2 \\
-x^2 + 5 & \text{if } -2 \leq x < 2 \\
-2(-x + 1) & \text{if } x \geq 2
\end{cases}
\]
### 1. Evaluating \( f(-2) \):
Since \( -2 \) falls in the interval \( -2 \leq x < 2 \), we use the second piece:
\[
f(-2) = -(-2)^2 + 5 = -4 + 5 = 1
\]
### 2. Evaluating \( f(4.6) \):
Since \( 4.6 \geq 2 \), we use the third piece:
\[
f(4.6) = -2(-4.6 + 1) = -2(-3.6) = 7.2
\]
**Final Answers:**
- \( f(-2) = 1 \)
- \( f(4.6) = 7.2 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To find \( f(-2) \), we look at the piece of the function that applies when \( -2 \leq x < 2 \). According to the definition of \( f(x) \), for this interval: \[ f(x) = -x^2 + 5 \] Plugging in \( x = -2 \): \[ f(-2) = -(-2)^2 + 5 = -4 + 5 = 1 \] Now, for \( f(4.6) \), we consider the piece of the function for \( x \geq 2 \), which is: \[ f(x) = -2[-x + 1] \] Substituting \( x = 4.6 \): \[ f(4.6) = -2[-4.6 + 1] = -2[-3.6] = 7.2 \] Thus, the final answers are: \( f(-2) = 1 \) \( f(4.6) = 7.2 \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium