5. STORAGE The front of a storage bunker can be modeled by \( y=-\frac{5}{216}(x-72)(x+72) \), where \( x \) and \( y \) are measured in inches. The \( x \)-axis represents the ground. Find the width of the bunker at ground level. (Section 7.5 )
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the width of the bunker at ground level, we need to determine where the front of the storage bunker intersects the ground, which is represented by \( y = 0 \). We set the equation \( y = -\frac{5}{216}(x-72)(x+72) \) equal to zero: \[ -\frac{5}{216}(x-72)(x+72) = 0 \] This implies that either \( (x-72) = 0 \) or \( (x+72) = 0 \). Solving these, we find: 1. \( x - 72 = 0 \) leads to \( x = 72 \) 2. \( x + 72 = 0 \) leads to \( x = -72 \) The total distance between these two points is: \[ 72 - (-72) = 72 + 72 = 144 \text{ inches} \] So, the width of the bunker at ground level is **144 inches**. To further verify, you could check that the function \( y \) equals zero at these points, reaffirming that they mark the width of the structure. Always remember, when you set a quadratic equation to zero, finding the x-intercepts will lead you right to the necessary dimensions!