Pregunta
upstudy study bank question image url

\[ \begin{array}{l} |2 x-2|=4 \\ x=\square \\ x=\square \end{array} \] (smaller value) (larger value) Additional Materials

Ask by Warner Moran. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \( x = -1 \) and \( x = 3 \).

Solución

To solve the equation \( |2x - 2| = 4 \), we need to consider the definition of absolute value. The equation \( |A| = B \) implies two cases: \( A = B \) and \( A = -B \). ### Step 1: Set up the cases 1. **Case 1:** \( 2x - 2 = 4 \) 2. **Case 2:** \( 2x - 2 = -4 \) ### Step 2: Solve each case **Case 1:** \[ 2x - 2 = 4 \] Add 2 to both sides: \[ 2x = 6 \] Now, divide by 2: \[ x = 3 \] **Case 2:** \[ 2x - 2 = -4 \] Add 2 to both sides: \[ 2x = -2 \] Now, divide by 2: \[ x = -1 \] ### Step 3: List the solutions The solutions to the equation \( |2x - 2| = 4 \) are: - \( x = -1 \) (smaller value) - \( x = 3 \) (larger value) ### Final Answer \[ \begin{array}{l} x = -1 \quad \text{(smaller value)} \\ x = 3 \quad \text{(larger value)} \end{array} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the equation \(|2x - 2| = 4\), we can break it into two separate cases. First, let's set up the two scenarios from the absolute value expression: 1. \(2x - 2 = 4\) 2. \(2x - 2 = -4\) For the first case, add 2 to both sides to get \(2x = 6\) and then divide by 2, yielding \(x = 3\). For the second case, add 2 to both sides to get \(2x = -2\) and divide by 2, yielding \(x = -1\). So, the solutions are \(x = -1\) (smaller value) and \(x = 3\) (larger value). --- You might be surprised to learn that absolute value equations can model a variety of real-life scenarios. For example, in physics, they can represent distances, such as how far away an object is from a certain point, regardless of direction. When you're calculating speeds or determining how far you need to travel, these equations help clarify the reality of motion without worrying about whether you're moving forward or backward. --- When working with absolute values, a common mistake is forgetting to consider both positive and negative scenarios of the equation. Always remember to set the expression inside the absolute value equal to both the positive and negative values of the other side to find all solutions! It’s a simple step that can lead you to miss half the answers if overlooked.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad