Pregunta
upstudy study bank question image url

Study the scenario and complete the question(s) that follow(s):
Designing a Unique Aquarium Tank
As an engineer designing custom aquarium tanks, you are tasked with creating a uniquely shaped tank to fit a specific space. The tank’s profile is defined by the curves and , and it is rotated around the line to form a distinctive, bowl-like structure. To ensure the tank meets volume requirements for water capacity and aquatic life, you must calculate its total volume using integral methods.
Source: Mafemba, J. 2024.
Using the shell method, calculate the volume generated by rotating the region around the specified line in the scenario above.
(8 Marks)

Ask by Reeves Whittaker. in South Africa
Mar 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of the aquarium tank is cubic units.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

To calculate the volume generated by rotating the area between the curves and around the line using the shell method, we follow these steps:
  1. Identify the Intersection Points:
    To find the limits of integration, solve for the x-values where the curves intersect:

    This simplifies to:


    Thus, . The curves intersect at the points (0, 2) and (1, 1).
  2. Set Up the Shell Method Integral:
    The formula for the shell method when rotating around a horizontal line occurs is given by:
    Here, the radius (distance from the line of rotation, to a point on the curve) and the height (top curve minus bottom curve) must be determined.
    • The radius is: .
    • Height of the shell is: top curve - bottom curve:
      .
  3. Set Limits of Integration:
    The limits of integration are from to .
  4. Volume Integral:
    Putting it all together, we calculate the volume:
    This simplifies to:
  5. Calculate:
    Expanding:
    Therefore, the volume integral becomes:
    Now, integrating term by term:
    Evaluating from 0 to 1:
Thus, the total volume of the aquarium tank is cubic units.
Assigning marks for the clarity and correctness of each step would guide scoring accordingly, including limit identification, integral setup, evaluation, and final volume computation.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad