Pregunta
upstudy study bank question image url

2. An unknown gas diffuses 1.5 times slower than nitrogen, N2. If the molar mass of nitrogen is \( 28 \mathrm{~g} / \mathrm{mol} \), find the molar mass of the unknown gas.

Ask by Thornton Ellis. in Ghana
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The molar mass of the unknown gas is \(63 \, \text{g/mol}\).

Solución

Given that the unknown gas diffuses 1.5 times slower than nitrogen (N2), we can use Graham's Law of Diffusion to find the molar mass of the unknown gas. Graham's Law states that the rate of diffusion of a gas is inversely proportional to the square root of its molar mass. Mathematically, this can be expressed as: \[ \frac{\text{Rate of diffusion of gas 1}}{\text{Rate of diffusion of gas 2}} = \sqrt{\frac{\text{Molar mass of gas 1}}{\text{Molar mass of gas 2}}} \] In this case, the rate of diffusion of the unknown gas is 1.5 times slower than that of nitrogen (N2). Let's denote the molar mass of the unknown gas as \( M \) and the molar mass of nitrogen as \( 28 \, \text{g/mol} \). We can set up the equation based on Graham's Law: \[ \frac{1}{1.5} = \sqrt{\frac{28}{M}} \] Now, we can solve for the molar mass of the unknown gas, \( M \). Solve the equation by following steps: - step0: Solve for \(M\): \(\frac{1}{1.5}=\sqrt{\frac{28}{M}}\) - step1: Find the domain: \(\frac{1}{1.5}=\sqrt{\frac{28}{M}},M>0\) - step2: Divide the numbers: \(\frac{2}{3}=\frac{2\sqrt{7}}{\sqrt{M}}\) - step3: Swap the sides: \(\frac{2\sqrt{7}}{\sqrt{M}}=\frac{2}{3}\) - step4: Rewrite the expression: \(\sqrt{M}=\frac{2\sqrt{7}\times 3}{2}\) - step5: Evaluate: \(\sqrt{M}=3\sqrt{7}\) - step6: Raise both sides to the \(2\)-th power\(:\) \(\left(\sqrt{M}\right)^{2}=\left(3\sqrt{7}\right)^{2}\) - step7: Evaluate the power: \(M=63\) - step8: Check if the solution is in the defined range: \(M=63,M>0\) - step9: Find the intersection: \(M=63\) - step10: Check the solution: \(M=63\) The molar mass of the unknown gas is \(63 \, \text{g/mol}\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve for the molar mass of the unknown gas, we can use Graham's law of effusion, which states that the rate of effusion of a gas is inversely proportional to the square root of its molar mass. If the unknown gas diffuses 1.5 times slower than nitrogen (N₂), we can set up the equation: \[ \frac{\text{Rate of N}_2}{\text{Rate of unknown gas}} = \sqrt{\frac{M_{\text{unknown}}}{M_{N2}}} \] Given the rate ratio of 1:1.5, we rewrite it as: \[ \frac{1}{1.5} = \sqrt{\frac{M_{\text{unknown}}}{28}} \] Squaring both sides gives us: \[ \left(\frac{1}{1.5}\right)^2 = \frac{M_{\text{unknown}}}{28} \] Calculating \(\left(\frac{1}{1.5}\right)^2\) results in \(\frac{1}{2.25} = \frac{28}{M_{\text{unknown}}}\). Now, cross-multiply and solve for \(M_{\text{unknown}}\): \[ M_{\text{unknown}} = 28 \times 2.25 = 63 \mathrm{~g/mol} \] So, the molar mass of the unknown gas is \(63 \mathrm{~g/mol}\). --- During your next trip on an aircraft, you can marvel at how the principles of gas diffusion impact cabin pressure and oxygen levels! Understanding diffusion rates is critical for aerospace engineers to design systems that ensure optimal performance and safety during high-altitude flights. If you're analyzing the properties of various gases, remember to consider temperature and pressure conditions! Common mistakes include overlooking the effect of these variables, which can lead to inaccurate molecular weight calculations. Always ensure that you’re working under ideal gas conditions when making such assessments!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad