Pregunta
upstudy study bank question image url

\( \gamma \) and 5 are substracted and added respectively from a positive number. The produce of the rwo news numbers obtoined is 140 Find the number

Ask by Goodwin Logan. in Malaysia
Dec 07,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation is \( (x - \gamma)(x + 5) = 140 \). To find the positive number \( x \), use the quadratic formula with \( a = 1 \), \( b = 5 - \gamma \), and \( c = -5\gamma - 140 \).

Solución

Let the positive number be \( x \). According to the problem, when \( \gamma \) is subtracted from \( x \), we get \( x - \gamma \), and when 5 is added to \( x \), we get \( x + 5 \). The product of these two new numbers is given as: \[ (x - \gamma)(x + 5) = 140 \] Expanding this equation, we have: \[ x^2 + 5x - \gamma x - 5\gamma = 140 \] Rearranging gives: \[ x^2 + (5 - \gamma)x - 5\gamma - 140 = 0 \] This is a quadratic equation in the form \( ax^2 + bx + c = 0 \), where: - \( a = 1 \) - \( b = 5 - \gamma \) - \( c = -5\gamma - 140 \) To find the positive number \( x \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting \( a \), \( b \), and \( c \): \[ x = \frac{-(5 - \gamma) \pm \sqrt{(5 - \gamma)^2 - 4(1)(-5\gamma - 140)}}{2(1)} \] This simplifies to: \[ x = \frac{\gamma - 5 \pm \sqrt{(5 - \gamma)^2 + 20\gamma + 560}}{2} \] To find a specific value for \( x \), we need a specific value for \( \gamma \). If \( \gamma \) is not specified, we cannot find a unique solution for \( x \). If you have a specific value for \( \gamma \), please provide it, and we can solve for \( x \). Otherwise, the solution will depend on the value of \( \gamma \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's denote the positive number as \( x \). According to the problem, when \( \gamma \) is subtracted from \( x \), the new number is \( x - \gamma \). When 5 is added to \( x \), the new number is \( x + 5 \). The product of these two new numbers is given as 140, which leads us to the equation: \[ (x - \gamma)(x + 5) = 140 \] Now, let's simplify the left-hand side: \[ x^2 + 5x - \gamma x - 5\gamma = 140 \] Rearranging gives us the equation: \[ x^2 + (5 - \gamma)x - 5\gamma - 140 = 0 \] This is a quadratic equation in the standard form \( ax^2 + bx + c = 0 \). The specific values for \( \gamma \) would be necessary to solve for \( x \). Let's assume \( \gamma = 3 \) just for calculation: \[ x^2 + (5 - 3)x - 5(3) - 140 = 0 \] \[ x^2 + 2x - 15 - 140 = 0 \] \[ x^2 + 2x - 155 = 0 \] Now we can solve for \( x \) using the quadratic formula: \[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \] Substituting \( a = 1, b = 2, c = -155 \): \[ x = \frac{{-2 \pm \sqrt{{2^2 - 4(1)(-155)}}}}{2(1)} \] \[ x = \frac{{-2 \pm \sqrt{{4 + 620}}}}{2} \] \[ x = \frac{{-2 \pm \sqrt{624}}}{2} \] \[ x = \frac{{-2 \pm 24.98}}{2} \] Calculating the two possible \( x \) values yields \( x \approx 11.49 \) or \( x \approx -13.49 \). Since \( x \) must be positive, we find: \[ x \approx 11.49 \] Thus, the positive number is approximately 11.49. Would you like to explore any specific value for \( \gamma \) or another approach entirely?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad