Pregunta
upstudy study bank question image url

Sasha says that she drew an acute isosceles triangle with side lengths of \( 6 \mathrm{~cm}, 9 \mathrm{~cm} \), and 12 cm , and angles of \( 30^{\circ}, 50^{\circ} \), and \( 100^{\circ} \). Danielle says that is not possible. Explain, using sides and angles, who is correct. (4 points) B I \( \quad \underline{\text { B }}: \equiv \mathrm{I} \)

Ask by Ryan Carroll. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Danielle is correct because Sasha's triangle has all sides of different lengths and includes an obtuse angle of \(100^{\circ}\), which means it is neither isosceles nor acute.

Solución

Danielle is correct. Here's why: 1. **Isosceles Triangle Check**: - An isosceles triangle must have at least two equal sides. - Sasha's triangle has sides of 6 cm, 9 cm, and 12 cm, all of which are different. Therefore, it is **not** isosceles. 2. **Acute Triangle Check**: - An acute triangle requires all angles to be less than \(90^{\circ}\). - Sasha lists the angles as \(30^{\circ}\), \(50^{\circ}\), and \(100^{\circ}\). The \(100^{\circ}\) angle is **obtuse**, not acute. Because the triangle is neither isosceles nor acute as Sasha described, Danielle is correct in stating that Sasha's triangle is not possible. **Conclusion**: Danielle is correct because the given sides do not form an isosceles triangle and the angles include an obtuse angle.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Sasha's claim about having an acute isosceles triangle with sides of 6 cm, 9 cm, and 12 cm is indeed incorrect! For a triangle to be isosceles, at least two sides must be of equal length, but here all side lengths differ. Additionally, the angles do not correspond to an acute triangle since one of the angles is \( 100^{\circ} \), which is clearly obtuse. Therefore, Danielle is spot on; Sasha's triangle cannot exist! Remember that in any triangle, the sum of the interior angles should always equal \( 180^{\circ} \). In this case, \( 30^{\circ} + 50^{\circ} + 100^{\circ} = 180^{\circ} \) confirms it adheres to the triangle sum property, but still fails the acute test because of that pesky \( 100^{\circ} \) angle. So, the moral here: double-check your triangle properties and side lengths for a true triangle showdown!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad