Pregunta
upstudy study bank question image url

What is the minimum number of terms you would need to sum in order
to approximate the sum of the series with an error
less than o.0001?

Ask by Mckenzie Parry. in the United States
Mar 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

You need to sum at least 3840 terms to approximate the series with an error less than 0.0001.

Solución

We can use the Alternating Series Estimation Theorem, which tells us that for an alternating series
if the sequence is positive, decreasing, and tends to zero, then the error made by approximating the sum by the partial sum is no larger than the absolute value of the next term:
For the given series, the general term is
We require the error to be less than . Thus, we need

Step 1. Solve the Inequality

Begin with
Multiply both sides by (which is positive for all ) and divide by :
This can be rewritten as
Since
the inequality becomes
Subtract 1 from both sides:
Divide by 2:

Step 2. Isolate

Raise both sides to the power (the reciprocal of ):

Step 3. Compute the Right‐Hand Side Approximately

For estimation, notice that is very close to . Thus, we approximate:
Taking logarithms or using exponentials:
We compute:
Then,
Thus,

Step 4. Determine the Minimum Number of Terms

Since must be greater than approximately , the smallest integer value satisfying this is
This means

Final Answer

To ensure the error is less than , you must sum at least terms.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To approximate the sum of the series with an error less than 0.0001, we can use the Alternating Series Estimation Theorem. This theorem states that the error of approximating the sum of an alternating series is less than or equal to the absolute value of the first neglected term.
First, we can identify the general term of the series . We want to find the smallest integer such that .
Calculating :
We need:
Multiplying both sides by :
Rearranging gives us:
Dividing by 0.0002:
Taking both sides to the power of :
Calculating :
Thus:
Therefore, the minimum integer is 792. This means you would need to sum at least the first 792 terms of the series to ensure the error is less than 0.0001.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad