Pregunta
upstudy study bank question image url

A skydiver drops her watch as she jumps out of a plane flying at an altitude of 6,400 feet. If the equation for height as a function of time is \( h(t)=-16 \mathrm{t}^{2}+ \) initial height where \( t \) is time in secondst and \( h(t) \) is height in feet, how many seconds will it take for the watch to hit the ground? [? ] seconds

Ask by Hardy Christensen. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

It will take 20 seconds for the watch to hit the ground.

Solución

To determine how many seconds it will take for the watch to hit the ground, we'll use the given height equation: \[ h(t) = -16t^2 + \text{initial height} \] Here: - \( h(t) \) is the height in feet at time \( t \) seconds. - The initial height is 6,400 feet. Substitute the initial height into the equation: \[ h(t) = -16t^2 + 6400 \] We want to find the time \( t \) when the watch hits the ground, which means \( h(t) = 0 \): \[ 0 = -16t^2 + 6400 \] Solving for \( t \): \[ 16t^2 = 6400 \\ t^2 = \frac{6400}{16} \\ t^2 = 400 \\ t = \sqrt{400} \\ t = 20 \text{ seconds} \] **Answer:** It will take 20 seconds for the watch to hit the ground.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how long it takes for the watch to hit the ground, we need to set \( h(t) = 0 \) and solve the equation. Given that the initial height is 6,400 feet, our equation becomes \( 0 = -16t^2 + 6400 \). Rearranging gives us \( 16t^2 = 6400 \), or \( t^2 = 400 \). Taking the square root gives us \( t = 20 \). So, it will take 20 seconds for the watch to hit the ground! In the thrilling world of skydiving, objects in free fall experience acceleration due to gravity, which is about 32 feet per second squared in the U.S. customary system. Interestingly, skydivers themselves reach terminal velocity, slowing their descent to about 120 miles per hour, or roughly 176 feet per second, once air resistance balances the force of gravity! To better understand the effects of air resistance, you might want to explore how different shapes and masses affect the fall of objects. A feather gently floats down, while a rock plummets at a different rate! This concept can help you grasp how various materials respond to gravity and the environment on earth.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad