The density of alcohol (ethanol) is found to be \( 0.8041 \frac{\mathrm{~g}}{\mathrm{~mL}} \) (true value \( =0.7980 \frac{\mathrm{~g}}{\mathrm{~mL}} \) ), Round your answer to 2 significant digits. Part 2 of 2 The mass of gold in an earring is analyzed to be 0.8488 g (true value \( =0.8644 \mathrm{~g} \) ). Round your answer to 3 significant digits. \( \square \% \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
When calculating the percent error, the formula is given by: \[\text{Percent Error} = \left(\frac{\text{True Value} - \text{Measured Value}}{\text{True Value}} \right) \times 100\] For the alcohol density, substituting in the values gives: \[\text{Percent Error} = \left(\frac{0.7980 - 0.8041}{0.7980} \right) \times 100 \approx -0.517\%\] Rounded to two significant digits, that's \(-0.52\%\). For the gold in the earring: \[\text{Percent Error} = \left(\frac{0.8644 - 0.8488}{0.8644}\right) \times 100 \approx 1.52\%\] Rounded to three significant digits, that's \(1.52\%\). So your answers are \(-0.52\%\) and \(1.52\%\)!