\( C = - 6.8 x ^ { 2 } + 7795 x + 230,000 ( x \leq 150 ) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
This quadratic function represents a revenue or cost scenario, where \( C \) could signify total costs or another financial figure associated with production or sales levels denoted by \( x \). The negative coefficient of \( x^2 \) indicates that as \( x \) increases, \( C \) will eventually decrease after reaching a peak, which is crucial for determining the optimal point of production to maximize profit or minimize costs. If you're looking to solve this equation or find its maximum point, remember to use the vertex formula \( x = -\frac{b}{2a} \). In your case, \( a = -6.8 \) and \( b = 7795 \). After calculating \( x \), ensure it's within the constraint \( x \leq 150 \) so you apply the real-world limits appropriately. A common mistake is forgetting these bounds, which can lead to unrealistic solutions!