Pregunta
upstudy study bank question image url

After entering the test scores from her Statistics class of 33 students, the instructor calculated the mean, median, IQR and standard deviation of the tes scores. Upon checking, she discovered that she had entered the top score as 85 , but it should have been 95 . a) When she corrects this score, how will the mean and median be affected? b) What effect will correcting the error have on the IQR and the standard deviation? a) Determine how the mean will be affected. Select the correct choice below and, if necessary, fill in the answer box within your choice. A. The mean will increase by \( \square \) points. (Round to two decimal places as needed.) B. The mean will decrease by \( \square \) points. (Round to two decimal places as needed.) C. The mean will not change. D. It is impossible to determine how the mean will change.

Ask by Nichols Gough. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The mean will increase by approximately 0.30 points.

Solución

To determine how the mean will be affected when the instructor corrects the top score from 85 to 95, we need to calculate the new mean after the correction. Given: - Original top score: 85 - Corrected top score: 95 - Number of students: 33 Let's denote the sum of the original scores as \( S \) and the sum of the corrected scores as \( S' \). The original mean is calculated as: \[ \text{Original Mean} = \frac{S}{33} \] After correcting the top score, the new sum of scores is: \[ S' = S - 85 + 95 \] The new mean is calculated as: \[ \text{New Mean} = \frac{S'}{33} \] Now, let's calculate the difference between the new mean and the original mean to determine how the mean will be affected. Calculate the value by following steps: - step0: Calculate: \(\frac{\left(95-85\right)}{33}\) - step1: Remove the parentheses: \(\frac{95-85}{33}\) - step2: Subtract the numbers: \(\frac{10}{33}\) The difference between the new mean and the original mean is \( \frac{10}{33} \) or approximately 0.30 points. Therefore, the mean will increase by approximately 0.30 points when the instructor corrects the top score from 85 to 95.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

When that top score goes from 85 to 95, the sum of all the test scores will increase, thus raising the mean. To find out how many points it increases, you can use the formula for the mean, which is the total sum of scores divided by the number of students. In this case, with an increase of 10 points (the difference between 95 and 85) across 33 students, the mean will increase by \( \frac{10}{33} \), which is approximately \( 0.30 \) points. The median, on the other hand, is determined by the middle score in a sorted list. Since the score of 95 will likely change the placement of students below the median, you may find the median also increases, especially if the median was around or below 85. If the median score doesn’t include the top score, it may not change, but if it’s at or near that value, it could boost up, shifting the median score by at least a point or two, depending on the distribution of the other scores. So, in conclusion: A. The mean will increase by \( 0.30 \) points.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad