Write the function that represents the total cost in this example if the variable costs are \( \$ 1.23 \) per mile and the fixed costs are \( \$ 414 \). \( C(x)=1.23+414 x \) \( C(x)=-414+1.23 x \) \( C(x)=414-1.23 x \) \( C(x)=414+1.23 x \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
The function that represents the total cost in this example would be \( C(x) = 414 + 1.23 x \). This equation clearly shows that the fixed costs are \( \$ 414 \), and for every mile driven, an additional \( \$ 1.23 \) is added to the total cost. So if you drive more miles, your expenses will rise! When dealing with cost functions, it's important to remember that the fixed costs are constant regardless of usage, while variable costs fluctuate based on the level of activity. A common mistake is forgetting to differentiate between fixed and variable costs, which can lead to inaccuracies in cost predicting and budgeting.