Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The integral of
with respect to
is
.
Solución
Calculate the integral
.
Evaluate the integral by following steps:
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
- step1: Evaluate the power:
- step2: Use properties of integrals:
- step3: Use the substitution
to transform the integral
- step4: Simplify:
- step5: Use the substitution
to transform the integral
- step6: Rewrite the expression:
- step7: Use properties of integrals:
- step8: Multiply the numbers:
- step9: Use the substitution
to transform the integral
- step10: Simplify:
- step11: Use the substitution
to transform the integral
- step12: Evaluate the integral:
- step13: Simplify:
- step14: Multiply the terms:
- step15: Multiply the terms:
- step16: Reduce the fraction:
- step17: Substitute back:
- step18: Substitute back:
- step19: Simplify:
- step20: Add the constant of integral C:
The integral ofwith respect to is , where is an arbitrary constant.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To solve the integral
, we can use a substitution method.
Let’s set:
Then, the derivative of
with respect to
is:
Next, we also need to express
in terms of
:
Now, we can rewrite the integral:
However,
can also be expressed in terms of
, simplifying our evaluation.
After proper substitution and adjustments, we need to compute the new integral as:
This integral can be computed using standard techniques or numerical integration if needed.
The final answer, after complete evaluation and back-substituting the values, yields:
Returning
:
This is the evaluated integral.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium