Responder
The calculations are correct.
- \( 0.934 \, \frac{\text{g}}{\text{mL}} \times 4.75 \, \text{mL} = 4.43 \, \text{g} \)
- \( \frac{142.41 \, \text{g}}{0.38 \, \text{mL}} = 370 \, \frac{\text{g}}{\text{mL}} \)
Both answers have the right number of significant digits.
Solución
Let's verify each calculation by considering both the mathematical operations and the rules for significant figures.
### 1. Multiplication: \( 0.934 \, \frac{\text{g}}{\text{mL}} \times 4.75 \, \text{mL} \)
**Step-by-Step Calculation:**
1. **Multiply the Numerical Values:**
\[
0.934 \times 4.75 = 4.4435 \, \text{g}
\]
2. **Determine Significant Figures:**
- **0.934** has **3 significant figures**.
- **4.75** has **3 significant figures**.
- In multiplication, the result should have the **same number of significant figures as the factor with the least number of significant figures**.
3. **Apply Significant Figures:**
\[
4.4435 \, \text{g} \rightarrow 4.43 \, \text{g} \quad (\text{rounded to 3 significant figures})
\]
**Final Answer:**
\[
0.934 \, \frac{\text{g}}{\text{mL}} \times 4.75 \, \text{mL} = \mathbf{4.43 \, \text{g}}
\]
### 2. Division: \( \frac{142.41 \, \text{g}}{0.38 \, \text{mL}} \)
**Step-by-Step Calculation:**
1. **Divide the Numerical Values:**
\[
\frac{142.41}{0.38} = 374.2368421 \, \frac{\text{g}}{\text{mL}}
\]
2. **Determine Significant Figures:**
- **142.41** has **5 significant figures**.
- **0.38** has **2 significant figures**.
- In division, the result should have the **same number of significant figures as the divisor or dividend with the least number of significant figures**.
3. **Apply Significant Figures:**
\[
374.2368421 \, \frac{\text{g}}{\text{mL}} \rightarrow 370 \, \frac{\text{g}}{\text{mL}} \quad (\text{rounded to 2 significant figures})
\]
*Note:* The trailing zero in "370" indicates that there are two significant figures.
**Final Answer:**
\[
\frac{142.41 \, \text{g}}{0.38 \, \text{mL}} = \mathbf{370 \, \frac{\text{g}}{\text{mL}}}
\]
### **Summary**
Both of your calculations correctly apply the rules for significant figures:
1. \( 0.934 \, \frac{\text{g}}{\text{mL}} \times 4.75 \, \text{mL} = 4.43 \, \text{g} \) (3 significant figures)
2. \( \frac{142.41 \, \text{g}}{0.38 \, \text{mL}} = 370 \, \frac{\text{g}}{\text{mL}} \) (2 significant figures)
Great job!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución