Pregunta
What is the solution to the system of equations? \( \left\{\begin{array}{l}-4 x-10 y=-12 \\ 2 x+5 y=-3\end{array}\right. \)
Ask by Wells Mullins. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The system of equations has no solution.
Solución
Solve the system of equations \( -4x-10y=-12;2x+5y=-3 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}-4x-10y=-12\\2x+5y=-3\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=\frac{6-5y}{2}\\2x+5y=-3\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(2\times \frac{6-5y}{2}+5y=-3\)
- step3: Simplify:
\(6=-3\)
- step4: Calculate:
\(\left\{ \begin{array}{l}x \in \varnothing \\y \in \varnothing \end{array}\right.\)
- step5: Rewrite:
\((x, y) \in \varnothing\)
The system of equations \( \left\{\begin{array}{l}-4 x-10 y=-12 \\ 2 x+5 y=-3\end{array}\right. \) has no solution.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To solve the system of equations, we can use the method of elimination or substitution. If we take the second equation, \(2x + 5y = -3\), and multiply it by 2, we can align it with the first equation: \[ 4x + 10y = 6 \] Now, we can add this to the first equation: \[ -4x - 10y = -12 \] \[ 4x + 10y = 6 \] Adding them cancels out \(x\) and \(y\): \[ 0 = -6 \] This is a contradiction, which means the system of equations has no solutions. The lines represented by these equations are parallel and never intersect.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium