If angle \( \theta \) lies in Quadrant II and \( \sin \theta=\frac{3}{\sqrt{45}} \). Determine possible coordinates for point P on the terminal arm of angle \( \theta \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the coordinates of point P on the terminal arm of angle \( \theta \), we first need to simplify the sine value. Given \( \sin \theta = \frac{3}{\sqrt{45}} \), we can simplify \( \sqrt{45} \) to \( 3\sqrt{5} \). Thus, \( \sin \theta = \frac{3}{3\sqrt{5}} = \frac{1}{\sqrt{5}} \). Since \( \sin \theta \) represents the y-coordinate in the unit circle, we have \( y = \frac{1}{\sqrt{5}} \). Now, in Quadrant II, the x-coordinate will be negative. To find the x-coordinate, we can use the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \left(\frac{1}{\sqrt{5}}\right)^2 + \cos^2 \theta = 1 \implies \frac{1}{5} + \cos^2 \theta = 1 \implies \cos^2 \theta = 1 - \frac{1}{5} = \frac{4}{5}. \] Taking the square root, we find \( \cos \theta = -\frac{2}{\sqrt{5}} \) (negative in Quadrant II). Thus, the coordinates for point \( P \) on the terminal arm of angle \( \theta \) are: \[ P\left(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right). \] This means that point \( P \) lies in Quadrant II, reflecting the characteristics of angle \( \theta \).