Pregunta
simpity \( \frac{2 x^{5}}{x^{5}}+\frac{2}{x^{5}} \)
Ask by Lyons Stuart. in the United Arab Emirates
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The simplified expression is \( \frac{2(x^{5} + 1)}{x^{5}} \).
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\frac{2x^{5}}{x^{5}}+\frac{2}{x^{5}}\)
- step1: Transform the expression:
\(\frac{2x^{5}+2}{x^{5}}\)
Calculate or simplify the expression \( 2x^{5}+2 \).
Simplify the expression by following steps:
- step0: Solution:
\(2x^{5}+2\)
Factor the expression \( 2x^{5}+2 \).
Factor the expression by following steps:
- step0: Factor:
\(2x^{5}+2\)
- step1: Factor the expression:
\(2\left(x^{5}-x^{4}+x^{3}-x^{2}+x+x^{4}-x^{3}+x^{2}-x+1\right)\)
- step2: Factor the expression:
\(2\left(x\left(x^{4}-x^{3}+x^{2}-x+1\right)+x^{4}-x^{3}+x^{2}-x+1\right)\)
- step3: Factor the expression:
\(2\left(x+1\right)\left(x^{4}-x^{3}+x^{2}-x+1\right)\)
Let's simplify the expression \( \frac{2 x^{5}}{x^{5}}+\frac{2}{x^{5}} \) step by step.
1. **Simplify the first term**:
\[
\frac{2 x^{5}}{x^{5}} = 2
\]
because \( x^{5} \) in the numerator and denominator cancels out.
2. **Combine the terms**:
Now we have:
\[
2 + \frac{2}{x^{5}}
\]
3. **Combine into a single fraction**:
To combine these terms into a single fraction, we can express \( 2 \) as \( \frac{2x^{5}}{x^{5}} \):
\[
\frac{2x^{5}}{x^{5}} + \frac{2}{x^{5}} = \frac{2x^{5} + 2}{x^{5}}
\]
4. **Factor the numerator**:
The numerator \( 2x^{5} + 2 \) can be factored:
\[
2(x^{5} + 1)
\]
Thus, we have:
\[
\frac{2(x^{5} + 1)}{x^{5}}
\]
5. **Final expression**:
The simplified expression is:
\[
\frac{2(x^{5} + 1)}{x^{5}}
\]
This is the final simplified form of the original expression.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
Let's break it down! The expression \( \frac{2 x^{5}}{x^{5}}+\frac{2}{x^{5}} \) simplifies as follows: The first part, \( \frac{2 x^{5}}{x^{5}} \), simplifies to 2 since any non-zero number raised to the same power cancels out. Now for the second part, \( \frac{2}{x^{5}} \), remains as it is. So, combining both parts gives you the final simplified expression: \[ 2 + \frac{2}{x^{5}} \] And there you have it! Nice and simple!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium