Pregunta
upstudy study bank question image url

Find the greatest common factor. \( 10 \mathrm{~m}^{3}, 2 \mathrm{~m}^{2} \) Write your answer as a constant times a product of single variables raised to exponents.

Ask by Sanders Bush. in the United States
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The greatest common factor is \( 2m^{2} \).

Solución

The greatest common factor (GCF) of \( 10 \mathrm{~m}^{3} \) and \( 2 \mathrm{~m}^{2} \) can be found by: 1. **Finding the GCF of the coefficients**: - The coefficients are 10 and 2. - \( \text{GCF}(10, 2) = 2 \). 2. **Finding the GCF of the variable parts**: - The variables are \( \mathrm{m}^{3} \) and \( \mathrm{m}^{2} \). - The GCF is \( \mathrm{m}^{2} \) (the lower exponent). Combining these, the GCF of the entire expressions is: \[ 2 \mathrm{~m}^{2} \] **Answer:** \( 2 \mathrm{~m}^{2} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the greatest common factor (GCF) of \( 10 \mathrm{~m}^{3} \) and \( 2 \mathrm{~m}^{2} \), we start by breaking down the expressions into their components. The coefficients \( 10 \) and \( 2 \) have a GCF of \( 2 \). For the variable part, \( m^3 \) and \( m^2 \), the GCF is determined by the lowest exponent, which is \( m^2 \). Thus, the GCF is: \[ 2 \mathrm{~m}^{2} \] If we wanted to express it in the specified format, it would be: \[ 2 \cdot m^{2} \] --- While the concept of the greatest common factor is straightforward, it has roots in ancient mathematics. The ancient Greeks, particularly Euclid, contributed significantly to this area, developing algorithms to find common divisors long before modern mathematics fully formed. It was their systematic approach that laid the groundwork for what we now refer to as the Euclidean algorithm. In real-life situations, understanding factors can help simplify problems, especially in areas like construction or cooking. For instance, when scaling recipes or determining the size of materials, knowing the GCF allows one to minimize waste and ensure the best fit between parts or ingredients, making the processes far more efficient!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad