Given functions \( g(x)=\frac{1}{\sqrt{x}} \) and \( m(x)=x^{2}-4 \), state the domains of the following functions using interval notation. Domain of \( \frac{g(x)}{m(x)}:(-\infty, \infty) \) Domain of \( g(m(x)):(-\infty,-2] \) Domain of \( m(g(x)):(\infty, 0) \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
![](/pmw/light_bulb.png?etag=525fd69ac661e11754e2fc9f1b18a4ee)
![](/pmw/spiral_notepad.png?etag=abe3906b7558c543a7b30ba53a3b5a5b)
Mind Expander
The correct domain of \( \frac{g(x)}{m(x)} \) is \( (0, 2) \) because \( g(x) \) is undefined for \( x \leq 0 \) and \( m(x) \) is zero at \( x = 2 \), which causes the function to be undefined there as well. For \( g(m(x)) \), we need \( m(x) \) to be non-negative, so \( x^2 - 4 \geq 0 \) gives us the intervals \( (-\infty, -2] \) and \( [2, \infty) \). However, since \( g(x) = \frac{1}{\sqrt{x}} \) requires positive input, we only take \( (-\infty, -2] \). Finally, \( m(g(x)) \) translates to evaluating \( g(x) \) first, which is positive for \( x > 0 \), resulting in \( m \) being applied to values \( g(x) > 0 \). The output \( m(x) \) will be non-existent for \( g(x) \rightarrow \infty \) as \( m(x) = x^2 - 4 \geq 0\) is satisfied. Thus, the domain is \( (0, \infty) \).
![](/pmw/img-try-permium.webp)