(a) The masses of 2 bags of sugar, \( A \) and \( B \), are 750 g and \( 1 \frac{1}{3} \mathrm{~kg} \) respectively. Find the ratio of the mass of \( B \) to the mass of \( A \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the ratio of the mass of bag \( B \) to the mass of bag \( A \), we first need to convert both masses to the same unit. Bag \( A \) has a mass of \( 750 \) g. Bag \( B \) has a mass of \( 1 \frac{1}{3} \) kg, which can be converted to grams: \( 1 \frac{1}{3} \) kg = \( \frac{4}{3} \) kg = \( \frac{4}{3} \times 1000 \) g = \( \frac{4000}{3} \) g = approximately \( 1333.33 \) g. Now, we find the ratio of \( B \) to \( A \): \[ \text{Ratio} = \frac{\text{mass of } B}{\text{mass of } A} = \frac{1333.33}{750} = \frac{4000/3}{750} = \frac{4000}{3 \times 750} = \frac{4000}{2250} = \frac{8}{4.5} = \frac{16}{9} \] Thus, the ratio of the mass of \( B \) to the mass of \( A \) is \( \frac{16}{9} \).