Pregunta
upstudy study bank question image url

Which statements describe the function \( f(x)=3\left(\frac{1}{3}\right)^{x} \) ? Check all that apply. Each successive output is the previous output divided by 3 . As the domain values increase, the range values decrease. The graph of the function is linear, decreasing from left to right. Each successive output is the previous output multiplied by 3 . The range of the function is all real numbers greater than 0 . The domain of the function is all real numbers greater than 0 .

Ask by Daniels Burton. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- Each successive output is the previous output divided by 3. - As the domain values increase, the range values decrease. - The range of the function is all real numbers greater than 0.

Solución

Let's analyze the function \( f(x) = 3\left(\frac{1}{3}\right)^x \): 1. **Successive Outputs:** - For each increase in \( x \) by 1, the function becomes: \[ f(x+1) = 3\left(\frac{1}{3}\right)^{x+1} = 3\left(\frac{1}{3}\right)^x \cdot \frac{1}{3} = \frac{f(x)}{3} \] This means each successive output is the previous output **divided by 3**. 2. **Behavior as \( x \) Increases:** - Since the base \( \frac{1}{3} \) is less than 1, the function decreases as \( x \) increases. Therefore, as the domain values increase, the range values **decrease**. 3. **Graph Characteristics:** - The function is **exponential**, not linear. It decreases from left to right but is not a straight line. 4. **Range and Domain:** - **Range:** The function \( f(x) = 3\left(\frac{1}{3}\right)^x \) always yields positive values for any real \( x \). Therefore, the range is **all real numbers greater than 0**. - **Domain:** The domain of an exponential function includes all real numbers, not just those greater than 0. Based on this analysis, the correct statements are: - **Each successive output is the previous output divided by 3.** - **As the domain values increase, the range values decrease.** - **The range of the function is all real numbers greater than 0.** **Correct Options:** - Each successive output is the previous output divided by 3. - As the domain values increase, the range values decrease. - The range of the function is all real numbers greater than 0.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let’s break down the function \( f(x) = 3\left(\frac{1}{3}\right)^{x} \) in a fun way! Each successive output is indeed the previous output divided by 3. This function is an exponential decay, so as \( x \) increases, \( f(x) \) steadily decreases! Now, when we look at the graph of this function, it creates a smooth curve that goes down from left to right, not a straight line, confirming that it’s not linear. The range consists of all positive real numbers since the function approaches 0 but never quite touches it! Therefore, the range is greater than 0, while the domain covers all real numbers, so no limits there.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad