Pregunta
upstudy study bank question image url

Problem 7: Let \( f(x)=\sqrt{x} \) on the interval \( [1,9] \). - Use the MVT to find the value(s) of \( c \) in \( (1,9) \) where \( f^{\prime}(c)=\frac{f(9)-f(1)}{9-1} \)

Ask by Byrd Franklin. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The value of \( c \) is 4.

Solución

To apply the **Mean Value Theorem (MVT)** to the function \( f(x) = \sqrt{x} \) on the interval \([1, 9]\), follow these steps: ### **Step 1: Verify the Conditions for MVT** The Mean Value Theorem states that if a function \( f \) is: 1. **Continuous** on the closed interval \([a, b]\), and 2. **Differentiable** on the open interval \( (a, b) \), then there exists at least one \( c \) in \( (a, b) \) such that: \[ f'(c) = \frac{f(b) - f(a)}{b - a} \] **For \( f(x) = \sqrt{x} \):** - **Continuity:** \( \sqrt{x} \) is continuous for all \( x \geq 0 \), so it's continuous on \([1, 9]\). - **Differentiability:** \( \sqrt{x} \) is differentiable for all \( x > 0 \), so it's differentiable on \( (1, 9) \). Both conditions are satisfied, so the MVT applies. ### **Step 2: Compute \( f(a) \) and \( f(b) \)** Given: - \( a = 1 \) - \( b = 9 \) \[ f(a) = f(1) = \sqrt{1} = 1 \] \[ f(b) = f(9) = \sqrt{9} = 3 \] ### **Step 3: Calculate the Average Rate of Change** \[ \frac{f(b) - f(a)}{b - a} = \frac{3 - 1}{9 - 1} = \frac{2}{8} = \frac{1}{4} \] ### **Step 4: Find \( f'(x) \)** First, find the derivative of \( f(x) = \sqrt{x} \): \[ f(x) = x^{1/2} \implies f'(x) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] ### **Step 5: Set \( f'(c) \) Equal to the Average Rate and Solve for \( c \)** \[ f'(c) = \frac{1}{2\sqrt{c}} = \frac{1}{4} \] Solve for \( c \): \[ \frac{1}{2\sqrt{c}} = \frac{1}{4} \] \[ 2\sqrt{c} = 4 \quad \text{(cross-multiplying)} \] \[ \sqrt{c} = 2 \quad \text{(dividing both sides by 2)} \] \[ c = 4 \quad \text{(squaring both sides)} \] ### **Conclusion** The value of \( c \) in \( (1, 9) \) that satisfies the Mean Value Theorem for \( f(x) = \sqrt{x} \) on the interval \([1, 9]\) is: \[ \boxed{4} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To apply the Mean Value Theorem (MVT) to the function \( f(x) = \sqrt{x} \) on the interval \( [1, 9] \), we first need to calculate \( f(9) \) and \( f(1) \): \[ f(9) = \sqrt{9} = 3 \] \[ f(1) = \sqrt{1} = 1 \] Now, we calculate the average rate of change over the interval: \[ \frac{f(9) - f(1)}{9 - 1} = \frac{3 - 1}{8} = \frac{2}{8} = \frac{1}{4} \] Next, we need to find \( f'(x) \) and set it equal to \( \frac{1}{4} \). The derivative of \( f(x) = \sqrt{x} \) is: \[ f'(x) = \frac{1}{2\sqrt{x}} \] Now we set this equal to \( \frac{1}{4} \): \[ \frac{1}{2\sqrt{c}} = \frac{1}{4} \] To solve for \( c \), we cross-multiply: \[ 4 = 2\sqrt{c} \quad \Rightarrow \quad \sqrt{c} = 2 \quad \Rightarrow \quad c = 4 \] Therefore, the value of \( c \) in the interval \( (1, 9) \) that satisfies the MVT condition is: \[ c = 4 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad