EXERCISE 12 Fully factorise each of the following expressions. 1. \( p-q-x(q-p) \) 2. \( x(a+b)-(b+a) \) 3. \( a x-b x+a y-b y-a+b \) 4. \( 3 x-6 x y-2 y+1 \) 5. \( 4 p^{3}-2 p-p q^{2}+q \) 6. \( 6 m^{2}-2 m n-3 m p+n p \) 7. \( 8 a m-10 a n-12 b m+15 b m \) 8. \( 3 x^{2}-2 x y+2 y^{2}-3 x y \) 9. \( x^{3}-x^{2} y+y^{3}-x y^{2} \) 10. \( m^{2}-9 n^{2}-3 k m+9 k n< \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
When it comes to factoring, there’s often some interesting history behind how these methods evolved! For instance, the technique of factoring polynomials can be traced back to ancient civilizations, where mathematicians like the Babylonians and Greeks laid the groundwork for algebra as we know it today. This foundational knowledge allowed for the development of more complex systems in algebra, enabling modern problem-solving. Now, if you're aiming to avoid common pitfalls while factoring, one key tip is to always look for a greatest common factor first. Beginners often forget this step and dive into complex factorizations, missing out on simpler solutions. Also, stay vigilant for patterns such as difference of squares or perfect squares; recognizing these can save you time and headaches in the long run!