Pregunta
upstudy study bank question image url

6 Which ordered pair is a solution to this syste \( y=x^{2}-6 x+11 \) \( y=-3 x+9 \) \( (1,0) \) \( (4,0) \)

Ask by Reese Watson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Neither (1, 0) nor (4, 0) is a solution to the system.

Solución

To determine which ordered pair is a solution to the system of equations: \[ \begin{cases} y = x^2 - 6x + 11 \\ y = -3x + 9 \end{cases} \] we need to find the values of \( x \) and \( y \) that satisfy both equations simultaneously. **Step 1: Set the Equations Equal to Each Other** Since both equations are equal to \( y \), set them equal: \[ x^2 - 6x + 11 = -3x + 9 \] **Step 2: Rearrange the Equation** Move all terms to one side to form a quadratic equation: \[ x^2 - 6x + 11 + 3x - 9 = 0 \\ x^2 - 3x + 2 = 0 \] **Step 3: Solve the Quadratic Equation** Factor the quadratic: \[ x^2 - 3x + 2 = (x - 1)(x - 2) = 0 \] So, the solutions for \( x \) are: \[ x = 1 \quad \text{or} \quad x = 2 \] **Step 4: Find Corresponding \( y \) Values** Plug each \( x \) back into one of the original equations, say \( y = -3x + 9 \): 1. For \( x = 1 \): \[ y = -3(1) + 9 = 6 \] So, one solution is \( (1, 6) \). 2. For \( x = 2 \): \[ y = -3(2) + 9 = 3 \] So, the other solution is \( (2, 3) \). **Step 5: Check Given Options** The provided ordered pairs are \( (1, 0) \) and \( (4, 0) \). - **For \( (1, 0) \):** - Plug \( x = 1 \) into \( y = x^2 - 6x + 11 \): \[ y = 1 - 6 + 11 = 6 \neq 0 \] - This does not satisfy the first equation. - **For \( (4, 0) \):** - Plug \( x = 4 \) into \( y = -3x + 9 \): \[ y = -12 + 9 = -3 \neq 0 \] - This does not satisfy the second equation. **Conclusion:** Neither \( (1, 0) \) nor \( (4, 0) \) is a solution to the system. The actual solutions to the system are \( (1, 6) \) and \( (2, 3) \). **Final Answer:** Neither (1, 0) nor (4, 0) satisfies both equations, so neither is a solution to the system.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the ordered pair that is a solution to the system of equations, we can substitute the x-values of the given pairs into both equations to see if the corresponding y-values match. For \( (1,0) \): 1. Substitute \( x = 1 \) into the first equation: \( y = 1^2 - 6(1) + 11 = 1 - 6 + 11 = 6 \) (not a solution). 2. Substitute \( x = 1 \) into the second equation: \( y = -3(1) + 9 = -3 + 9 = 6 \) (not a solution). For \( (4,0) \): 1. Substitute \( x = 4 \) into the first equation: \( y = 4^2 - 6(4) + 11 = 16 - 24 + 11 = 3 \) (not a solution). 2. Substitute \( x = 4 \) into the second equation: \( y = -3(4) + 9 = -12 + 9 = -3 \) (not a solution). Neither ordered pair is a solution to the given system of equations. Sorry, but looks like we need to solve it more carefully!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad