Pregunta
upstudy study bank question image url

8. A cone has a volume of 300 units \( ^{3} \), and a cylinder has a volume of 100 units \( { }^{3} \). Is it possible that the cylinder and the cone have the same height and the same radius? Why or why not?

Ask by Elliott Martinez. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

It's not possible for the cone and the cylinder to have the same height and radius with the given volumes because the equations derived from their volume formulas don't match.

Solución

To determine if a cone and a cylinder can have the same height and radius while having different volumes, we can use the formulas for the volumes of a cone and a cylinder. 1. **Volume of a cone**: \[ V_c = \frac{1}{3} \pi r^2 h \] where \( V_c \) is the volume of the cone, \( r \) is the radius, and \( h \) is the height. 2. **Volume of a cylinder**: \[ V_{cy} = \pi r^2 h \] where \( V_{cy} \) is the volume of the cylinder. Given: - Volume of the cone \( V_c = 300 \) units \( ^{3} \) - Volume of the cylinder \( V_{cy} = 100 \) units \( ^{3} \) Now, if both the cone and the cylinder have the same height \( h \) and radius \( r \), we can set up the equations based on their volumes: From the cone's volume: \[ 300 = \frac{1}{3} \pi r^2 h \] From the cylinder's volume: \[ 100 = \pi r^2 h \] Now, we can express \( h \) in terms of \( r \) from both equations. From the cylinder's volume: \[ h = \frac{100}{\pi r^2} \] Substituting this expression for \( h \) into the cone's volume equation: \[ 300 = \frac{1}{3} \pi r^2 \left(\frac{100}{\pi r^2}\right) \] Now, simplifying this: \[ 300 = \frac{100}{3} \] This equation does not hold true, as \( 300 \neq \frac{100}{3} \). Thus, it is not possible for the cone and the cylinder to have the same height and radius while having the given volumes. The volumes are fundamentally different due to the geometric properties of the shapes. In conclusion, the answer is **no**, it is not possible for the cylinder and the cone to have the same height and radius given their volumes.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine whether a cone and a cylinder can have the same height and radius while having different volumes, we use their volume formulas. The volume \( V \) of a cone is given by \( V = \frac{1}{3} \pi r^2 h \) and for a cylinder, it's \( V = \pi r^2 h \). Even with the same radius \( r \) and height \( h \), since the cone's volume is one-third that of a cylinder, the volumes can’t equal 300 units \( ^{3} \) and 100 units \( ^{3} \) simultaneously. In other words, their relationship inherently results in a mismatch in volume given their formulas. Let’s explore the practical implications! If you're designing objects or containers, knowing these formulas helps ensure that they are tailored for their intended use. For instance, if you were creating a vase with a certain capacity, you could choose between a cone or cylinder shape based on the volume you want to achieve while using the same materials. Understanding the differences can lead to innovative designs in everyday products!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad