Calculate \( 2 \frac{2}{3}+3 \frac{1}{6} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To calculate \( 2 \frac{2}{3}+3 \frac{1}{6} \), first convert the mixed numbers to improper fractions. For \( 2 \frac{2}{3} \): \[ 2 \frac{2}{3} = \frac{2 \times 3 + 2}{3} = \frac{6 + 2}{3} = \frac{8}{3} \] For \( 3 \frac{1}{6} \): \[ 3 \frac{1}{6} = \frac{3 \times 6 + 1}{6} = \frac{18 + 1}{6} = \frac{19}{6} \] Now, add the two improper fractions: \[ \frac{8}{3} + \frac{19}{6} \] To add these fractions, we need a common denominator. The least common multiple of 3 and 6 is 6. Convert \( \frac{8}{3} \) to a fraction with a denominator of 6: \[ \frac{8}{3} = \frac{8 \times 2}{3 \times 2} = \frac{16}{6} \] Now, we can add: \[ \frac{16}{6} + \frac{19}{6} = \frac{16 + 19}{6} = \frac{35}{6} \] To convert \( \frac{35}{6} \) back to a mixed number: \[ \frac{35}{6} = 5 \frac{5}{6} \] Thus, the final answer is: \[ \boxed{5 \frac{5}{6}} \]