Pregunta
upstudy study bank question image url

A company produces very unusual CD's for which the variable cost is \( S 18 \) per \( C D \) and the fixed costs are \( S \) 40000 . They will sell the CD's for \( S 71 \) each. Let \( x \) be the number of \( C D \) 's produced. Write the total cost \( C \) as a function of the number of CD's produced. \( C=\$ \) Write the total revenue \( R \) as a function of the number of \( C D \) 's produced. \( R=S \) Write the total profit \( P \) as a function of the number of CD's produced. \( P=\$ \square \) Find the number of \( C D \) 's which must be produced to break even. The number of CD's which must be produced to break even is Question Help: \( D \) Video

Ask by Ingram Mcfarlane. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Total Cost \( C = 18x + 40,000 \) Total Revenue \( R = 71x \) Total Profit \( P = 53x - 40,000 \) Number of CDs to break even: approximately 755 CDs

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

To write the total cost function \( C \) based on the given information, we combine fixed and variable costs. The total cost \( C \) can be expressed as: \[ C = 18x + 40000 \] For total revenue \( R \), since each CD sells for \( S 71 \), we have: \[ R = 71x \] Profit \( P \) is defined as total revenue minus total cost: \[ P = R - C = 71x - (18x + 40000) = 53x - 40000 \] Now, to find the break-even point where profit \( P \) equals zero: \[ 53x - 40000 = 0 \Rightarrow 53x = 40000 \Rightarrow x = \frac{40000}{53} \approx 754.72 \] Thus, the number of CDs which must be produced to break even is approximately 755. --- Did you know the concept of break-even analysis dates back to the early 20th century? It was popularized by economists to help businesses determine the minimum production level needed to avoid losses. Since then, it’s become a staple in business strategy, influencing decisions from pricing to production scales! In real-world applications, companies often use these calculations not just for CDs but for all kinds of products, such as tech gadgets or food items. By knowing the break-even point, businesses can strategize effectively on whether to ramp up production, adjust prices, or find ways to cut costs, all to maximize their profits and minimize losses.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad