Pregunta
upstudy study bank question image url

Determine if the following system of equations has no solutions, infinitely many solutions or exactly one solution. \[ \begin{array}{l}-x+2 y=-7 \\ -4 x+8 y=-28\end{array} \] Answer Infinitely Many Solutions No Solutions One Solution

Ask by Daniels Dickson. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are infinitely many solutions to the system of equations.

Solución

The given system of equations is: \[ \begin{cases} -x + 2y = -7 \quad \text{(Equation 1)} \\ -4x + 8y = -28 \quad \text{(Equation 2)} \end{cases} \] To determine the nature of the solutions, let's analyze the equations: 1. **Check for Proportionality:** Multiply **Equation 1** by 4: \[ 4(-x) + 4(2y) = 4(-7) \\ -4x + 8y = -28 \] This result is identical to **Equation 2**: \[ -4x + 8y = -28 \] 2. **Interpretation:** Since **Equation 2** is just a multiple of **Equation 1**, both equations represent the same line in the plane. Therefore, every solution that satisfies one equation will also satisfy the other. **Conclusion:** There are infinitely many solutions to the system. **Answer:** Infinitely Many Solutions

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To analyze the system of equations, we'll first simplify the second equation: The second equation \(-4x + 8y = -28\) can be simplified by dividing every term by -4, giving us: \[ x - 2y = 7 \] Now, we can rewrite this in a standard form: \[ x - 2y = 7 \] Now we can compare this with the first equation which is already in standard form: \[ -x + 2y = -7 \] If we multiply the first equation by -1, we get: \[ x - 2y = 7 \] Both equations are essentially the same, meaning they represent the same line. Therefore, the system has infinitely many solutions, as any point on this line will satisfy both equations. For a visual twist, imagine these lines as two dancers spinning on stage, with each one following the other's steps perfectly. Since they never miss a beat, they end up dancing together for all time, illustrating the infinitely many solutions! As a little tip, when faced with such systems, always check if you can simplify the equations first, and remember that identical equations signal a dance of infinite possibilities! Just watch out; if the two equations were parallel but not the same, that would point to two dancers who can’t quite sync up—no solution there!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad