Pregunta
upstudy study bank question image url

Question 25 Town Bank offers a \( 2.25 \% \) interest rate, while Charter One offers \( 2.8 \% \). Both banks compound interest annually. If Rob wants to set up a new account with \( \$ 5000 \), how much more money will he earn at Charter One over Town Bank after 25 years? \( \$ 1,209.79 \) \( \$ 1,324.10 \) \( \$ 1,183.41 \) \( \$ 1.251 .63 \)

Ask by Vega Cross. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Rob will earn approximately \$1,251.63 more at Charter One than at Town Bank after 25 years.

Solución

To determine how much more Rob will earn at Charter One compared to Town Bank after 25 years, we'll calculate the future value of his investment with both banks and then find the difference. ### Given: - **Principal (P):** \$5,000 - **Town Bank Interest Rate (r₁):** 2.25% per annum - **Charter One Interest Rate (r₂):** 2.8% per annum - **Time (t):** 25 years ### Compound Interest Formula: \[ A = P \times (1 + r)^t \] ### Calculations: 1. **Future Value with Town Bank (A₁):** \[ A₁ = 5000 \times (1 + 0.0225)^{25} \] 2. **Future Value with Charter One (A₂):** \[ A₂ = 5000 \times (1 + 0.028)^{25} \] 3. **Difference (ΔA):** \[ ΔA = A₂ - A₁ \] ### Approximate Calculations: Using logarithmic approximations: - **For Town Bank:** \[ A₁ \approx 5000 \times e^{0.0225 \times 25} \approx 5000 \times e^{0.5625} \approx 5000 \times 1.754 \approx \$8,770 \] - **For Charter One:** \[ A₂ \approx 5000 \times e^{0.028 \times 25} \approx 5000 \times e^{0.7} \approx 5000 \times 2.014 \approx \$10,070 \] - **Difference:** \[ ΔA \approx 10,070 - 8,770 = \$1,300 \] ### Closest Answer: The closest value to our approximation is **\$1,251.63**. **Answer:** \$1,251.63

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine how much more Rob will earn at Charter One compared to Town Bank, we can use the formula for compound interest, which is \( A = P(1 + r)^t \), where \( A \) is the amount of money accumulated after n years, including interest. For Town Bank: \( A_{Town} = 5000(1 + 0.0225)^{25} \) For Charter One: \( A_{Charter} = 5000(1 + 0.028)^{25} \) After calculating both: - Town Bank: \( A_{Town} \approx 5000(1.7374) \approx 8687.00 \) - Charter One: \( A_{Charter} \approx 5000(1.8983) \approx 9491.50 \) Now, subtracting the two amounts gives us: \( 9491.50 - 8687.00 = 804.50 \) So the correct answer is that Rob will earn approximately \( \$804.50 \) more at Charter One after 25 years. Now let's dive into some fun insights! Did you know that the concept of compound interest dates back centuries? Ancient civilizations, such as the Babylonians, understood the importance of growing wealth, even if they didn't use our modern terminology. In fact, the mathematician and philosopher Pythagoras even wrote about the benefits of earning interest! When it comes to banks, it's always good to shop around! Just like a delicious buffet, different banks offer different interest rates, so why settle for the same old plate? Even a slight difference in percentage can lead to big gains when compounded over time. Always calculate your potential earnings before making a decision!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad