Pregunta
A function
satisfies the differential equation
(a) What are the constant solutions of this equation?
Separate your answers by commas.
(b) For what values of
is
strictly increasing?
and
Separate your answers by commas.
(b) For what values of
and
Ask by Parry Griffin. in the United States
Mar 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
(a) The constant solutions are
.
(b) The function
is strictly increasing when
and
.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Bonus Knowledge
To solve the differential equation
, we start with part (a).
(a) The constant solutions occur when
. Thus, we set the right-hand side equal to zero:
Factoring out
, we get:
This gives the solutions
leading to
. Now we solve
using the quadratic formula:
Calculating those, we have:
So, the constant solutions are
.
(b) The function
is strictly increasing where
. From the equation, we need:
This is equivalent to:
Since
is non-positive (zero or negative), we must have
. We previously found the roots of the quadratic as
and
. The quadratic opens upwards, so it is negative between the roots:
Thus,
.
In summary,
is strictly increasing for
values in the interval
.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium