Pregunta
Find the domain of the function. \( g(x)=\frac{\sqrt{x-2}}{x-5} \) What is the domain of \( g \) ? (Type your answer in interval notation.)
Ask by Ramirez Franklin. in the United States
Feb 06,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The domain of \( g(x) \) is all real numbers \( x \) where \( x \) is greater than or equal to 2 but not equal to 5. In interval notation, this is \([2,5) \cup (5,\infty)\).
Solución
To find the domain of the function \( g(x) = \frac{\sqrt{x-2}}{x-5} \), we need to consider the following conditions:
1. **Square Root Condition**:
- The expression inside the square root must be non-negative:
\[
x - 2 \geq 0 \implies x \geq 2
\]
2. **Denominator Condition**:
- The denominator cannot be zero:
\[
x - 5 \neq 0 \implies x \neq 5
\]
Combining these two conditions, the domain of \( g(x) \) consists of all real numbers \( x \) such that \( x \geq 2 \) but \( x \) is not equal to 5.
In interval notation, this is expressed as:
\[
[2, 5) \cup (5, \infty)
\]
**Answer:**
\([2,5) \cup (5,\infty)\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
![](/pmw/light_bulb.png?etag=525fd69ac661e11754e2fc9f1b18a4ee)
![](/pmw/spiral_notepad.png?etag=abe3906b7558c543a7b30ba53a3b5a5b)
Extra Insights
To determine the domain of the function \( g(x) = \frac{\sqrt{x-2}}{x-5} \), we need to ensure that the expression under the square root is non-negative, and that the denominator is not zero. 1. The square root \( \sqrt{x-2} \) requires \( x-2 \geq 0 \), therefore \( x \geq 2 \). 2. The denominator \( x-5 \) cannot be zero, so \( x \neq 5 \). Combining these conditions, we have \( x \geq 2 \) and \( x \neq 5 \). Thus, the domain of \( g \) in interval notation is \( [2, 5) \cup (5, \infty) \).
![](/pmw/img-try-permium.webp)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium