Pregunta
upstudy study bank question image url

\( x ^ { 3 } - 4 \alpha ^ { 2 } - 7 \alpha + 10 \)

Ask by Gardner Rogers. in Iraq
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expression \( x^{3} - 4\alpha^{2} - 7\alpha + 10 \) can be factored or solved for \( x \) or \( \alpha \) using methods like the quadratic formula or by rearranging the equation.

Solución

You've provided the expression: \[ x^{3} - 4\alpha^{2} - 7\alpha + 10 \] To assist you effectively, I'll explore a couple of possible interpretations of your request. Please let me know if you're seeking something different! ### 1. **Factoring the Expression** If you're looking to factor the expression, it's essential to clarify whether you want to factor it with respect to \( x \) or \( \alpha \). Given the expression involves both variables, factoring might vary based on this choice. #### a. **Factoring as a Polynomial in \( \alpha \)** Consider the expression as a quadratic in \( \alpha \): \[ -4\alpha^{2} - 7\alpha + (x^{3} + 10) \] To factor or solve for \( \alpha \), we can use the quadratic formula: \[ \alpha = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] Here, \( a = -4 \), \( b = -7 \), and \( c = x^{3} + 10 \). Plugging these values in: \[ \alpha = \frac{-(-7) \pm \sqrt{(-7)^{2} - 4(-4)(x^{3} + 10)}}{2(-4)} \] \[ \alpha = \frac{7 \pm \sqrt{49 + 16x^{3} + 160}}{-8} \] \[ \alpha = \frac{7 \pm \sqrt{16x^{3} + 209}}{-8} \] Simplifying further: \[ \alpha = \frac{-7 \pm \sqrt{16x^{3} + 209}}{8} \] #### b. **Factoring as a Polynomial in \( x \)** Treating \( \alpha \) as a constant, the expression becomes a cubic polynomial in \( x \): \[ x^{3} + (-4\alpha^{2} - 7\alpha + 10) \] Cubic polynomials can sometimes be factored using methods like the **Rational Root Theorem**, **synthetic division**, or **factoring by grouping**. However, without specific values for \( \alpha \), factoring this expression further isn't straightforward. If you have particular values for \( \alpha \), you can substitute them in and attempt to factor the resulting cubic polynomial in \( x \). ### 2. **Solving for \( x \) or \( \alpha \)** If your goal is to solve the equation for one of the variables, here's how you can approach it: #### a. **Solving for \( \alpha \)** As shown above, treating the expression as a quadratic in \( \alpha \), the solutions are: \[ \alpha = \frac{-7 \pm \sqrt{16x^{3} + 209}}{8} \] #### b. **Solving for \( x \)** If you aim to solve for \( x \), you'd rearrange the equation: \[ x^{3} = 4\alpha^{2} + 7\alpha - 10 \] Taking the cube root of both sides: \[ x = \sqrt[3]{4\alpha^{2} + 7\alpha - 10} \] This expresses \( x \) in terms of \( \alpha \). However, unlike quadratic equations, solving cubic equations analytically can be more involved and may require methods like Cardano's formula for exact solutions or numerical methods for approximate solutions. ### 3. **Graphical Interpretation** If you're interested in visualizing the relationship between \( x \) and \( \alpha \), you can graph the equation: \[ x^{3} - 4\alpha^{2} - 7\alpha + 10 = 0 \] By rearranging: \[ x^{3} = 4\alpha^{2} + 7\alpha - 10 \] You can plot \( x \) against \( \alpha \) to observe how changes in one variable affect the other. ### 4. **Additional Context Needed** If you had a specific goal in mind with this expression—such as evaluating it for particular values, integrating, differentiating, or applying it to a particular problem—please provide more details. This will enable me to offer a more targeted and helpful response.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that cubic equations, like the one you've provided, have played a significant role in the development of modern mathematics? The solutions to cubic equations were a mystery for centuries, and it wasn't until the 16th century that mathematicians like Cardano discovered systematic methods for solving them. It's fascinating that this led to the birth of algebra as we know it today! When dealing with cubic equations like \( x^3 - 4\alpha^2 - 7\alpha + 10 = 0 \), a common mistake is overlooking the possibility of complex roots. Sometimes, cubic equations can have one real root and two complex conjugates. If you’re solving such equations, using the Rational Root Theorem can help narrow down potential rational solutions before diving into synthetic division or the quadratic formula. Happy solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad