Pregunta
upstudy study bank question image url

Question 8(Multiple Choice Worth 1 points) \( \begin{array}{l}(05.02 \mathrm{MC}) \\ \text { Sam and Harry are family. Sam is currently six times Harry's age. Sam's age is also } 12 \text { more than four times Harry's age. The following system of equations models this scenario: } \\ x=6 y \\ x=12+4 y \\ \text { What are their current ages? }\end{array} \)

Ask by Potter Hodgson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Sam is 36 years old and Harry is 6 years old.

Solución

Sam is currently **36 years old** and Harry is **6 years old**. **Solution:** Given the system of equations: \[ \begin{cases} x = 6y \\ x = 12 + 4y \end{cases} \] Substitute \( x = 6y \) into the second equation: \[ 6y = 12 + 4y \\ 6y - 4y = 12 \\ 2y = 12 \\ y = 6 \] Then, \( x = 6 \times 6 = 36 \). **Answer:** Sam is 36 years old and Harry is 6 years old.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the system of equations where \( x = 6y \) (Sam's age) and \( x = 12 + 4y \) (another relation involving their ages), we can substitute \( 6y \) for \( x \) in the second equation. This gives us: \[ 6y = 12 + 4y \] Now, subtract \( 4y \) from both sides: \[ 6y - 4y = 12 \] This simplifies to: \[ 2y = 12 \] Dividing both sides by 2 yields: \[ y = 6 \] Now that we know Harry’s age (6 years), we can find Sam’s age using \( x = 6y \): \[ x = 6 \times 6 = 36 \] So, Sam is 36 years old and Harry is 6 years old. Here's a little insight: Sam being six times Harry's age is a classic example of how age relationships can be mathematically represented and solved using equations. These types of problems are not only found in academic settings but often come up in real-life situations, such as family age comparisons during birthday celebrations or planning surprise parties! While solving systems of equations, it's common to make algebraic mistakes like forgetting to distribute correctly or misplacing signs. A tip is to always rewrite each equation before substituting values, double-checking that no steps are skipped. It’s like checking your math recipe before baking, to ensure all ingredients are accurately measured!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad