Use the discriminant to determine whether the quadratic equation has two unequal real solutions, a repeated real solution, or no real solution, without solving the equation. \( 3 x^{2}-6 x+3=0 \) Choose the sentence that describes the number of real solutions to the quadratic equation. There is no real solution. There are two unequal real solutions. There is a repeated solution.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To determine the nature of the solutions for the quadratic equation \( 3x^2 - 6x + 3 = 0 \), we can calculate the discriminant using the formula \( D = b^2 - 4ac \). Here, \( a = 3 \), \( b = -6 \), and \( c = 3 \). Plugging these values into the formula gives us \( D = (-6)^2 - 4(3)(3) = 36 - 36 = 0 \). Since the discriminant \( D \) equals zero, it tells us that there is a repeated solution. This means the quadratic touches the x-axis at exactly one point and doesn't cross it, resulting in one unique solution. So, the correct statement is: There is a repeated solution.