Find the slope of the line. \( 3 x-4 y=8 \) C. Divide both sides of the equation such that the coefficient of \( y \) is 1 . D. Find a point on the line. What do the values of \( m \) and \( b \) represent? A. The number \( m \) represents the slope of the line and the number \( b \) represents the \( y \)-intercept. B. The number \( m \) represents the slope of the line and the number \( b \) represents the \( x \)-intercept. C. The number \( m \) represents the \( y \)-intercept and the number \( b \) represents the slope of the line. D. The number \( m \) represents the \( x \)-intercept and the number \( b \) represents the slope of the line. Add the opposite of the \( y \)-term to both sides. \( 3 x-4 y=8 \) \( 3 x=4 y+8 \) Subtract the constant term from both sides. \( 3 x+\pi \square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the slope of the line given by the equation \( 3x - 4y = 8 \), you first need to rewrite it in slope-intercept form (y = mx + b). Start by isolating \( y \) by adding \( 4y \) to both sides and then subtracting \( 3x \). This gives you \( 4y = 3x - 8 \). Next, divide by 4: \( y = \frac{3}{4}x - 2 \). Thus, the slope \( m \) is \( \frac{3}{4} \) and the \( y \)-intercept \( b \) is -2. In this case, \( m \) represents how steep the line is, as it indicates the rise over run – for every 4 units you move to the right (run), the line goes up 3 units (rise). The value \( b \) is the point where the line intersects the \( y \)-axis, which tells you the starting point of the line when \( x \) is zero. So grab your graph paper and visualize it!