Responder
The solutions to the equation \( 3x^{2} - 6x + 2 = 0 \) are:
\[
x = 1 + \frac{\sqrt{3}}{3} \quad \text{and} \quad x = 1 - \frac{\sqrt{3}}{3}
\]
Approximately:
\[
x \approx 1.577 \quad \text{and} \quad x \approx 0.423
\]
Solución
To solve the quadratic equation \( 3x^{2} - 6x + 2 = 0 \) using the quadratic formula, follow these steps:
### **Quadratic Formula Recap**
For any quadratic equation of the form \( ax^{2} + bx + c = 0 \), the solutions for \( x \) are given by:
\[
x = \frac{ -b \pm \sqrt{b^{2} - 4ac} }{2a}
\]
### **Given Equation Analysis**
Identify the coefficients from the equation \( 3x^{2} - 6x + 2 = 0 \):
- \( a = 3 \)
- \( b = -6 \)
- \( c = 2 \)
### **Plugging into the Formula**
Substitute the values of \( a \), \( b \), and \( c \) into the quadratic formula:
\[
x = \frac{ -(-6) \pm \sqrt{(-6)^{2} - 4 \times 3 \times 2} }{2 \times 3}
\]
### **Simplifying Step-by-Step**
1. **Calculate the Discriminant (\( \Delta \))**:
\[
\Delta = b^{2} - 4ac = (-6)^{2} - 4 \times 3 \times 2 = 36 - 24 = 12
\]
2. **Compute the Square Root of the Discriminant**:
\[
\sqrt{\Delta} = \sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}
\]
3. **Substitute Back into the Formula**:
\[
x = \frac{6 \pm 2\sqrt{3}}{6}
\]
4. **Simplify the Fraction**:
\[
x = \frac{6}{6} \pm \frac{2\sqrt{3}}{6} = 1 \pm \frac{\sqrt{3}}{3}
\]
### **Final Solutions**
\[
x = 1 + \frac{\sqrt{3}}{3} \quad \text{and} \quad x = 1 - \frac{\sqrt{3}}{3}
\]
### **Approximate Decimal Values**
For a numerical approximation:
- \( \sqrt{3} \approx 1.732 \)
- \( \frac{\sqrt{3}}{3} \approx 0.577 \)
Thus, the solutions are approximately:
\[
x \approx 1 + 0.577 = 1.577 \quad \text{and} \quad x \approx 1 - 0.577 = 0.423
\]
### **Conclusion**
The quadratic equation \( 3x^{2} - 6x + 2 = 0 \) has two real solutions:
\[
x = 1 + \frac{\sqrt{3}}{3} \quad \text{and} \quad x = 1 - \frac{\sqrt{3}}{3}
\]
Or approximately:
\[
x \approx 1.577 \quad \text{and} \quad x \approx 0.423
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución