Pregunta
upstudy study bank question image url

Answer the following questions about the function whose derivative is .
a. What are the critical points of ?
b. On what open intervals is increasing or decreasing?
c. At what points, If any, does assume local maximum and minimum values?

Ask by George Mejia. in the United States
Mar 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. Critical Points
The function has critical points at and .
b. Intervals of Increase and Decrease
  • is increasing on and .
  • is decreasing on .
c. Local Extrema
  • Local maximum at .
  • Local minimum at .

Solución

a. Critical Points
The critical points occur where the derivative is zero or undefined. Given
set to find the critical points:
This equation gives:
so the critical points are:

b. Intervals of Increase and Decrease
To determine where is increasing or decreasing, we analyze the sign of on the intervals determined by the critical points and .
  1. For :
    Choose :
    Therefore, is increasing on .
  2. For :
    Choose :
    Therefore, is decreasing on .
  3. For :
    Choose :
    Therefore, is increasing on .

c. Local Maximum and Minimum
Local extrema occur at the critical points when the derivative changes sign.
  • At , changes from positive (for ) to negative (for ). This indicates a local maximum at .
  • At , changes from negative (for ) to positive (for ). This indicates a local minimum at .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the critical points of , we start with its derivative: . Setting the derivative equal to zero gives us the critical points: . The solutions to this equation are and .
Next, to analyze where is increasing or decreasing, we can test intervals determined by the critical points and . We test the intervals , , and :
  • For (e.g., ): (increasing)
  • For (e.g., ): (decreasing)
  • For (e.g., ): (increasing)
Thus, is increasing on and , and decreasing on .
To determine local maxima and minima, we consider the behavior around our critical points:
  • At , changes from increasing to decreasing, indicating a local maximum.
  • At , changes from decreasing to increasing, indicating a local minimum.
In summary:
  • Critical points are and .
  • is increasing on and , decreasing on .
  • There is a local maximum at and a local minimum at .
Exploring the roots of polynomials is key to solving analytical problems over the ages! Many historical mathematicians, from the Greeks to Descartes, contributed to our understanding of critical points and function behaviors, shaping modern calculus.
If you’re ever faced with critical points, don’t just stop there! Remember to sketch the sign chart after finding your intervals; it decorates your conclusions! Keeping track of signs at each interval prevents those common pitfalls of misidentifying if a function is increasing or decreasing.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad