Pregunta
upstudy study bank question image url

Score on last try: 0 of 1 pts. See Details for more. You can retry this question below Find the final amount of money in an account if \( \$ 3,100 \) is deposited at \( 7 \% \) interest compounded weekl and the money is left for 6 years. The final amount is \( \$ \square \) Round answer to 2 decimal places Submit Question

Ask by Chandler Rodriquez. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The final amount of money in the account is $4,716.75.

Solución

To find the final amount of money in an account after depositing $3,100 at a 7% interest compounded weekly for 6 years, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \] where: - \( A \) is the final amount of money in the account - \( P \) is the principal amount (initial deposit) = $3,100 - \( r \) is the annual interest rate = 7% = 0.07 - \( n \) is the number of times interest is compounded per year = 52 (since it is compounded weekly) - \( t \) is the time in years = 6 years Substitute the given values into the formula: \[ A = 3100 \left( 1 + \frac{0.07}{52} \right)^{52 \times 6} \] Now, we can calculate the final amount of money in the account. Calculate the value by following steps: - step0: Calculate: \(3100\left(1+\frac{0.07}{52}\right)^{52\times 6}\) - step1: Divide the terms: \(3100\left(1+\frac{7}{5200}\right)^{52\times 6}\) - step2: Add the numbers: \(3100\left(\frac{5207}{5200}\right)^{52\times 6}\) - step3: Multiply the numbers: \(3100\left(\frac{5207}{5200}\right)^{312}\) - step4: Simplify: \(3100\times \frac{5207^{312}}{5200^{312}}\) - step5: Rewrite the expression: \(100\times 31\times \frac{5207^{312}}{5200^{312}}\) - step6: Rewrite the expression: \(100\times 31\times \frac{5207^{312}}{100^{312}\times 52^{312}}\) - step7: Reduce the numbers: \(31\times \frac{5207^{312}}{100^{311}\times 52^{312}}\) - step8: Multiply the fractions: \(\frac{31\times 5207^{312}}{100^{311}\times 52^{312}}\) The final amount of money in the account after depositing $3,100 at a 7% interest compounded weekly for 6 years is approximately $4716.75. Therefore, the final amount is $4716.75.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the final amount in the account, you can use the compound interest formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the final amount, - \( P \) is the principal amount (\$3,100), - \( r \) is the annual interest rate (7% or 0.07), - \( n \) is the number of times interest is compounded per year (52 weeks), - \( t \) is the number of years (6). Plug in the values: \[ A = 3100 \left(1 + \frac{0.07}{52}\right)^{52 \times 6} \] Calculating this gives: \[ A \approx 3100 \left(1 + 0.00134615\right)^{312} \] \[ A \approx 3100 \left(1.00134615\right)^{312} \] \[ A \approx 3100 \times 1.2337 \text{ (approx.)} \] \[ A \approx 3,824.47 \] So, the final amount after 6 years would be approximately **\$3,824.47** when rounded to two decimal places.

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad