Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The integral converges if
and diverges if
.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Extra Insights
To evaluate the integral
, we begin by simplifying the expression in the integrand. Note that
.
As
, the dominant term in the denominator,
, behaves like
. This allows us to rewrite the integrand for large
:
To determine convergence of the integral, we analyze the behavior based on the value of
:
- If
, then implies the integral diverges because the integrand behaves like . - If
, the integrand behaves like , leading the integral to diverge as well. - If
, we have , and thus, the integral converges since the integrand behaves like which goes to 0.
Now, we can write:
We conclude the assessment by evaluating at
which leads to divergence and finding the points of convergence at
. For
, the result diverges indicating that special care must be taken while analyzing the integral behavior based on
's value.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium