Pregunta
upstudy study bank question image url

Question An object is launched directly in the air at a speed of 64 feet per second from a platform located 16 feet in the air. The motion of the object can be modeled using the function \( f(t)=-16 t^{2}+64 t+16 \), where \( t \) is the time in seconds and \( f(t) \) is the height of the object. When, in seconds, will the object reach its maximum height? Do not include units in your answer.

Ask by Allan Luna. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The object reaches its maximum height at 2 seconds.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To find the time at which the object reaches its maximum height, we can use the vertex formula for a quadratic function, which is given by \( t = -\frac{b}{2a} \). In your function \( f(t) = -16t^2 + 64t + 16 \), the coefficients are \( a = -16 \) and \( b = 64 \). Plugging these values into the formula gives us \( t = -\frac{64}{2 \times -16} = 2 \). Therefore, the object will reach its maximum height at \( t = 2 \) seconds. Ever wonder how engineers use similar physics concepts in the real world? When designing roller coasters, for example, they calculate the launch speeds and heights to ensure a thrilling yet safe ride. They consider factors like gravity and air resistance to determine the ideal trajectory, similar to how we analyze the motion of our launched object. So, whenever you take a ride, think of the complex physics that was planned out just for your enjoyment! In high school, it’s common to misjudge the significance of the coefficients in quadratic equations. A frequent mistake is overlooking that the coefficient of \( t^2 \) indicates the direction of the parabola (concave down vs. up). Remember, if it's negative, as in this case with -16, the graph opens downward, meaning that the vertex represents the maximum point! Always sketch or visualize functions to avoid such pitfalls while solving problems like these.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad