Pregunta

\( \int _{0}^{1}\int _{x}^{1}\cos (y)^{2} d y d x \)

Ask by Rogers Vaughan. in Iran
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The value of the integral is \( \frac{1 + \cos(2)}{8} + \frac{\sin(2)}{4} \), which is approximately **0.3003**.

Solución

To evaluate the double integral: \[ \int_{0}^{1} \int_{x}^{1} \cos^2(y) \, dy \, dx, \] we can proceed by switching the order of integration. The original region of integration is defined by \(0 \leq x \leq 1\) and \(x \leq y \leq 1\). Changing the order, we let \(y\) range from 0 to 1 and, for each fixed \(y\), \(x\) ranges from 0 to \(y\). This transforms the double integral into: \[ \int_{0}^{1} \int_{0}^{y} \cos^2(y) \, dx \, dy. \] Since \(\cos^2(y)\) does not depend on \(x\), the inner integral simplifies to: \[ \int_{0}^{y} \cos^2(y) \, dx = y \cos^2(y). \] Thus, the double integral becomes: \[ \int_{0}^{1} y \cos^2(y) \, dy. \] To evaluate this single integral, we can use the trigonometric identity \(\cos^2(y) = \frac{1 + \cos(2y)}{2}\): \[ \int_{0}^{1} y \cos^2(y) \, dy = \frac{1}{2} \int_{0}^{1} y (1 + \cos(2y)) \, dy. \] This splits into two integrals: \[ \frac{1}{2} \left( \int_{0}^{1} y \, dy + \int_{0}^{1} y \cos(2y) \, dy \right). \] 1. **First Integral:** \[ \int_{0}^{1} y \, dy = \left. \frac{y^2}{2} \right|_{0}^{1} = \frac{1}{2}. \] 2. **Second Integral:** Use integration by parts where \(u = y\) and \(dv = \cos(2y) \, dy\): \[ \int y \cos(2y) \, dy = \frac{y \sin(2y)}{2} - \frac{\cos(2y)}{4} + C. \] Evaluating from 0 to 1: \[ \left( \frac{\sin(2)}{2} + \frac{\cos(2) - 1}{4} \right). \] Putting it all together: \[ \frac{1}{2} \left( \frac{1}{2} + \frac{\sin(2)}{2} + \frac{\cos(2) - 1}{4} \right) = \frac{1}{8} + \frac{\sin(2)}{4} + \frac{\cos(2)}{8}. \] **Final Answer:** \[ \frac{1}{8} + \frac{\sin(2)}{4} + \frac{\cos(2)}{8} \] **Or, equivalently:** \[ \frac{1 + \cos(2)}{8} + \frac{\sin(2)}{4} \] --- **Numerical Approximation (Optional):** If you require a numerical value, substituting the values of \(\sin(2) \approx 0.9093\) and \(\cos(2) \approx -0.4161\): \[ \frac{1}{8} + \frac{0.9093}{4} + \frac{-0.4161}{8} \approx 0.125 + 0.2273 - 0.0520 \approx 0.3003. \] So, the integral approximately equals **0.3003**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the double integral \( \int _{0}^{1}\int _{x}^{1}\cos (y)^{2} \, d y \, d x \), we first change the order of integration. The region of integration is defined by \( 0 \leq x \leq 1 \) and \( x \leq y \leq 1 \). Reversing the order gives us the bounds: \( 0 \leq y \leq 1 \) and \( 0 \leq x \leq y \). Thus, we rewrite the integral as: \[ \int_{0}^{1} \int_{0}^{y} \cos^2(y) \, d x \, d y \] Now, we can integrate with respect to \( x \): \[ \int_{0}^{1} \left( \int_{0}^{y} \cos^2(y) \, d x \right) d y = \int_{0}^{1} (y \cos^2(y)) \, d y \] Here, the inner integral \( \int_{0}^{y} \cos^2(y) \, d x \) just gives \( y \cos^2(y) \) since we are integrating \( \cos^2(y) \) with respect to \( x \). Next, we need to evaluate \( \int_{0}^{1} y \cos^2(y) \, d y \). To do this, we'll use the identity: \[ \cos^2(y) = \frac{1 + \cos(2y)}{2} \] Substituting this into our integral yields: \[ \int_{0}^{1} y \cos^2(y) \, d y = \int_{0}^{1} y \cdot \frac{1 + \cos(2y)}{2} \, d y = \frac{1}{2} \int_{0}^{1} y \, d y + \frac{1}{2} \int_{0}^{1} y \cos(2y) \, d y \] Calculating the first integral: \[ \int_{0}^{1} y \, d y = \left[\frac{y^2}{2}\right]_{0}^{1} = \frac{1}{2} \] Now, we evaluate the second integral \( \int_{0}^{1} y \cos(2y) \, d y \) using integration by parts. Letting \( u = y \) and \( dv = \cos(2y) \, dy \), we have \( du = dy \) and \( v = \frac{1}{2} \sin(2y) \): \[ \int_{0}^{1} y \cos(2y) \, d y = \left[ \frac{y}{2} \sin(2y) \right]_{0}^{1} - \int_{0}^{1} \frac{1}{2} \sin(2y) \, dy \] Evaluating the boundary term: \[ \frac{1}{2} \sin(2) - 0 = \frac{1}{2} \sin(2) \] Now, we calculate \( \int_{0}^{1} \sin(2y) \, dy \): \[ \int_{0}^{1} \sin(2y) \, dy = -\frac{1}{2} \cos(2y) \bigg|_{0}^{1} = -\frac{1}{2} (\cos(2) - \cos(0)) = -\frac{1}{2} (\cos(2) - 1) \] Thus, \[ = -\frac{1}{2} \cos(2) + \frac{1}{2} = \frac{1 - \cos(2)}{2} \] Putting everything together, we have: \[ \int_{0}^{1} y \cos(2y) \, dy = \frac{1}{2} \sin(2) - \frac{1}{4} \left( 1 - \cos(2) \right) \] Finally, combining all terms in the calculation: \[ \int_{0}^{1} y \cos^2(y) \, d y = \frac{1}{2} \left( \frac{1}{2} + \left( \frac{1}{2} \sin(2) - \frac{1}{4} (1 - \cos(2)) \right) \right) \] Now let's finalize it:

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad