Pregunta
upstudy study bank question image url

A bag contains 3 blue marbles, 3 red marbles, and 4 yellow marbles. The probability of drawing a blue marble out of the bag is \( \frac{3}{10} \) or \( 30 \% \). How many of what color of marbles must be added to the bag so that the probability of a blue marble being drawn at random from the bag is \( 75 \% \) ? A. There must be \( \square \) red marbles added to the bag. B. There must be \( \square \) blue marbles added to the bag. C. There must be \( \square \) yellow marbles added to the bag.

Ask by Parsons Vaughn. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To achieve a 75% probability of drawing a blue marble, you must add 18 blue marbles to the bag.

Solución

To achieve a \(75\%\) probability of drawing a blue marble from the bag, let's analyze each scenario individually. ### **Initial Setup:** - **Blue marbles:** 3 - **Red marbles:** 3 - **Yellow marbles:** 4 - **Total marbles:** \(3 + 3 + 4 = 10\) - **Initial probability of drawing a blue marble:** \(\frac{3}{10} = 30\%\) ### **Objective:** Increase the probability of drawing a blue marble to \(75\%\). ### **A. Adding Red Marbles** If we add \(x\) red marbles: - **New red marbles:** \(3 + x\) - **Total marbles:** \(10 + x\) - **Probability of blue:** \(\frac{3}{10 + x} = 0.75\) **Solving for \(x\):** \[ \frac{3}{10 + x} = 0.75 \\ 3 = 0.75(10 + x) \\ 3 = 7.5 + 0.75x \\ 3 - 7.5 = 0.75x \\ -4.5 = 0.75x \\ x = -6 \] **Conclusion:** It's **impossible** to achieve a \(75\%\) probability of drawing a blue marble by adding red marbles alone. ### **B. Adding Blue Marbles** If we add \(y\) blue marbles: - **New blue marbles:** \(3 + y\) - **Total marbles:** \(10 + y\) - **Probability of blue:** \(\frac{3 + y}{10 + y} = 0.75\) **Solving for \(y\):** \[ \frac{3 + y}{10 + y} = 0.75 \\ 3 + y = 0.75(10 + y) \\ 3 + y = 7.5 + 0.75y \\ y - 0.75y = 7.5 - 3 \\ 0.25y = 4.5 \\ y = 18 \] **Conclusion:** You need to **add 18 blue marbles** to achieve a \(75\%\) probability of drawing a blue marble. ### **C. Adding Yellow Marbles** If we add \(z\) yellow marbles: - **New yellow marbles:** \(4 + z\) - **Total marbles:** \(10 + z\) - **Probability of blue:** \(\frac{3}{10 + z} = 0.75\) **Solving for \(z\):** \[ \frac{3}{10 + z} = 0.75 \\ 3 = 0.75(10 + z) \\ 3 = 7.5 + 0.75z \\ 3 - 7.5 = 0.75z \\ -4.5 = 0.75z \\ z = -6 \] **Conclusion:** It's **impossible** to achieve a \(75\%\) probability of drawing a blue marble by adding yellow marbles alone. ### **Summary:** - **A. Red Marbles Added:** **Impossible** - **B. Blue Marbles Added:** **18** - **C. Yellow Marbles Added:** **Impossible** **Answer:** **B.** To achieve a 75 % probability, 18 blue marbles must be added to the bag.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To increase the probability of drawing a blue marble to \( 75\% \), we can set up the equation based on the new total of marbles. Let’s denote the number of blue marbles to be added as \( b \), the number of red marbles as \( r \), and the number of yellow marbles as \( y \). Currently, there are \( 3 + r + y \) marbles and 3 blue marbles. The total number of marbles after adding will be \( 3 + r + y + b \). For blue to constitute \( 75\% \), we have: \[ \frac{3 + b}{3 + r + y + b} = 0.75. \] Cross-multiplying and simplifying, we would solve for \( r \), \( b \), and \( y \). Trial and error or systematic testing leads us to find adding \( 9 \) red marbles and keeping \( b = 0 \) and \( y = 0 \) works, thus: A. There must be \( 9 \) red marbles added to the bag. B. There must be \( 0 \) blue marbles added to the bag. C. There must be \( 0 \) yellow marbles added to the bag. In total, there will then be \( 12 \) marbles (3 blue, 9 red) and the probability becomes \( \frac{3}{12} = 0.75 \) or \( 75\% \)!

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad